Colors of
variables: wff
setvar class |
Syntax hints:
∈ wcel 2107 (class class class)co 7409
ℝcr 11109 1c1 11111
+ caddc 11113 2c2 12267 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-ext 2704 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-i2m1 11178 ax-1ne0 11179 ax-rrecex 11182 ax-cnre 11183 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-2 12275 |
This theorem is referenced by: 2cnALT
12288 3re
12292 2ne0
12316 3pos
12317 2lt3
12384 1lt3
12385 2lt4
12387 1lt4
12388 2lt5
12391 2lt6
12396 1lt6
12397 2lt7
12402 1lt7
12403 2lt8
12409 1lt8
12410 2lt9
12417 1lt9
12418 1le2
12421 2rene0
12423 halfre
12426 halfgt0
12428 halflt1
12430 rehalfcl
12438 halfpos2
12441 halfnneg2
12443 addltmul
12448 nominpos
12449 avglt1
12450 avglt2
12451 div4p1lem1div2
12467 nn0lele2xi
12527 nn0n0n1ge2b
12540 nn0ge2m1nn
12541 nn0le2is012
12626 halfnz
12640 3halfnz
12641 2lt10
12815 1lt10
12816 eluz4eluz2
12869 uzuzle23
12873 uz3m2nn
12875 2rp
12979 xnn0n0n1ge2b
13111 fztpval
13563 fz0to4untppr
13604 fzo0to42pr
13719 flhalf
13795 fldiv4p1lem1div2
13800 2txmodxeq0
13896 expubnd
14142 expmulnbnd
14198 nn0opthlem2
14229 faclbnd2
14251 faclbnd4lem1
14253 faclbnd5
14258 4bc2eq6
14289 hashgt23el
14384 hashfun
14397 hashge2el2dif
14441 hashge2el2difr
14442 wrdlenge2n0
14502 f1oun2prg
14868 01sqrexlem7
15195 sqrt4
15219 sqrt2gt1lt2
15221 abstri
15277 sqreulem
15306 amgm2
15316 caucvgrlem
15619 climcndslem1
15795 climcndslem2
15796 climcnds
15797 efcllem
16021 ege2le3
16033 ef01bndlem
16127 cos01bnd
16129 cos2bnd
16131 cos01gt0
16134 sin02gt0
16135 sincos2sgn
16137 sin4lt0
16138 eirrlem
16147 egt2lt3
16149 epos
16150 ene1
16153 sqrt2re
16193 mod2eq1n2dvds
16290 oddge22np1
16292 evennn2n
16294 nn0o1gt2
16324 nno
16325 nn0o
16326 nnoddm1d2
16329 bitsp1o
16374 bitsfzolem
16375 bitsfzo
16376 bitsfi
16378 6gcd4e2
16480 2mulprm
16630 ge2nprmge4
16638 isprm7
16645 3lcm2e6
16668 prmreclem2
16850 prmreclem6
16854 4sqlem11
16888 4sqlem12
16889 prmgaplem7
16990 2expltfac
17026 plusgndxnmulrndx
17242 starvndxnplusgndx
17250 scandxnplusgndx
17262 vscandxnplusgndx
17267 ipndxnplusgndx
17278 tsetndxnplusgndx
17302 plendxnplusgndx
17316 dsndxnplusgndx
17335 slotsdifunifndx
17346 oppgtsetOLD
19219 efgredleme
19611 mgpscaOLD
19996 mgptsetOLD
19998 mgpdsOLD
20001 rmodislmodOLD
20541 cnfldfunALTOLD
20958 zringndrg
21038 chfacfscmul0
22360 chfacfpmmul0
22364 psmetge0
23818 xmetge0
23850 bl2in
23906 metnrmlem3
24377 iihalf1
24447 iihalf2
24449 pcoass
24540 tcphcphlem1
24752 csbren
24916 trirn
24917 minveclem2
24943 minveclem4
24949 pjthlem1
24954 ovolunlem1a
25013 dyadss
25111 opnmbllem
25118 vitalilem2
25126 vitalilem4
25128 mbfi1fseqlem5
25237 lhop1lem
25530 aaliou3lem2
25856 aaliou3lem8
25858 pilem2
25964 pilem3
25965 pipos
25970 sinhalfpilem
25973 sincosq1lem
26007 sincosq4sgn
26011 tangtx
26015 sinq12gt0
26017 sincos4thpi
26023 tan4thpi
26024 sincos6thpi
26025 sineq0
26033 cos02pilt1
26035 cosq34lt1
26036 cosordlem
26039 cos0pilt1
26041 tanord1
26046 efif1olem1
26051 efif1olem2
26052 efif1olem4
26054 efif1o
26055 efifo
26056 2irrexpq
26239 cxpcn3lem
26255 root1id
26262 root1eq1
26263 root1cj
26264 cxpeq
26265 2logb9irr
26300 2logb3irr
26302 ang180lem1
26314 ang180lem2
26315 chordthmlem2
26338 1cubrlem
26346 atancj
26415 atantan
26428 atanbndlem
26430 atans2
26436 leibpi
26447 log2tlbnd
26450 log2ublem2
26452 log2ub
26454 divsqrtsumlem
26484 harmonicbnd3
26512 zetacvg
26519 lgamgulmlem2
26534 lgamgulmlem3
26535 lgamgulmlem4
26536 lgamgulmlem6
26538 lgamucov
26542 basellem1
26585 basellem2
26586 basellem3
26587 basellem5
26589 chtdif
26662 ppidif
26667 ppinncl
26678 chtrpcl
26679 ppieq0
26680 ppiltx
26681 ppiublem1
26705 ppiub
26707 chpeq0
26711 chteq0
26712 chtublem
26714 chtub
26715 chpval2
26721 chpub
26723 mersenne
26730 perfectlem1
26732 perfectlem2
26733 dchrptlem1
26767 dchrptlem2
26768 bcmono
26780 bclbnd
26783 bpos1lem
26785 bposlem1
26787 bposlem2
26788 bposlem3
26789 bposlem4
26790 bposlem5
26791 bposlem6
26792 bposlem7
26793 bposlem8
26794 bposlem9
26795 lgslem1
26800 lgsdirprm
26834 gausslemma2dlem0c
26861 gausslemma2dlem1a
26868 gausslemma2dlem2
26870 gausslemma2dlem3
26871 lgseisenlem1
26878 lgseisenlem2
26879 lgseisenlem3
26880 lgseisen
26882 lgsquadlem1
26883 lgsquadlem2
26884 m1lgs
26891 2lgslem1a1
26892 2lgslem1a2
26893 2lgslem1c
26896 2lgslem4
26909 2sqlem11
26932 2sq2
26936 2sqreultlem
26950 2sqreunnltlem
26953 chebbnd1lem1
26972 chebbnd1lem2
26973 chebbnd1lem3
26974 chebbnd1
26975 chtppilimlem1
26976 chtppilimlem2
26977 chtppilim
26978 chto1ub
26979 chebbnd2
26980 chto1lb
26981 chpchtlim
26982 chpo1ub
26983 chpo1ubb
26984 rplogsumlem1
26987 rplogsumlem2
26988 dchrisumlem2
26993 dchrisumlem3
26994 dchrvmasumiflem1
27004 dchrisum0fno1
27014 dchrisum0re
27016 dchrisum0lem1b
27018 dchrisum0lem1
27019 dchrisum0lem2
27021 rplogsum
27030 mulog2sumlem1
27037 mulog2sumlem2
27038 log2sumbnd
27047 selberglem2
27049 selbergb
27052 selberg2b
27055 chpdifbndlem1
27056 logdivbnd
27059 selberg3lem1
27060 selberg3
27062 selberg4lem1
27063 selberg4
27064 pntrmax
27067 pntrsumbnd2
27070 selberg3r
27072 selberg4r
27073 selberg34r
27074 pntrlog2bndlem2
27081 pntrlog2bndlem3
27082 pntrlog2bndlem4
27083 pntrlog2bndlem5
27084 pntrlog2bndlem6
27086 pntrlog2bnd
27087 pntpbnd1a
27088 pntpbnd1
27089 pntpbnd2
27090 pntpbnd
27091 pntibndlem2
27094 pntibndlem3
27095 pntibnd
27096 pntlemb
27100 pntlemg
27101 pntlemh
27102 pntlemr
27105 pntlemk
27109 pntlemo
27110 pnt2
27116 pnt
27117 ostth2lem1
27121 ostth3
27141 slotsinbpsd
27692 slotslnbpsd
27693 istrkg3ld
27712 tgldimor
27753 trgcgrg
27766 tgcgr4
27782 axlowdimlem6
28205 axlowdimlem16
28215 axlowdimlem17
28216 axlowdim
28219 upgrfi
28351 umgrupgr
28363 umgrislfupgrlem
28382 umgrislfupgr
28383 lfgrnloop
28385 usgruspgr
28438 usgrislfuspgr
28444 lfuhgr1v0e
28511 usgrexmpldifpr
28515 usgrexmplef
28516 nbusgrvtxm1
28636 vdegp1bi
28794 upgrewlkle2
28863 lfgrwlkprop
28944 upgr2pthnlp
28989 usgr2pthlem
29020 pthdlem1
29023 wwlksm1edg
29135 wwlksnextwrd
29151 wwlksnextfun
29152 wwlksnextinj
29153 wwlksnextproplem3
29165 clwlkclwwlklem2a1
29245 clwlkclwwlklem2a2
29246 clwlkclwwlklem2fv1
29248 clwlkclwwlklem2fv2
29249 clwlkclwwlklem2a4
29250 clwlkclwwlklem2a
29251 clwlkclwwlklem2
29253 clwlkclwwlk2
29256 clwlkclwwlkf
29261 clwwlkext2edg
29309 konigsbergiedgw
29501 konigsbergssiedgw
29503 konigsberglem1
29505 konigsberglem2
29506 konigsberglem3
29507 konigsberg
29510 frgrreggt1
29646 ex-pss
29681 ex-res
29694 ex-fv
29696 ex-fl
29700 ex-mod
29702 ex-abs
29708 nrt2irr
29726 ipidsq
29963 minvecolem2
30128 minvecolem4
30133 normlem7
30369 norm-ii-i
30390 norm3lemt
30405 normpar2i
30409 bcsiALT
30432 pjhthlem1
30644 opsqrlem6
31398 cdj3lem1
31687 addltmulALT
31699 threehalves
32081 pfx1s2
32105 wrdt2ind
32117 oppgleOLD
32131 cyc3conja
32316 resvplusgOLD
32450 drngidlhash
32552 sqsscirc1
32888 nexple
33007 dya2iocucvr
33283 omssubadd
33299 oddpwdc
33353 eulerpartlemgc
33361 fibp1
33400 coinfliplem
33477 coinflipspace
33479 ballotlem2
33487 signstfveq0
33588 prodfzo03
33615 hgt750lemd
33660 logdivsqrle
33662 hgt750lem
33663 hgt750lem2
33664 hgt750leme
33670 lfuhgr2
34109 usgrcyclgt2v
34122 acycgr2v
34141 subfacp1lem1
34170 subfacp1lem5
34175 subfacval3
34180 problem2
34651 problem5
34654 circum
34659 nn0prpwlem
35207 dnibndlem10
35363 knoppcnlem2
35370 knoppcnlem4
35372 knoppcnlem10
35378 unbdqndv2lem1
35385 knoppndvlem1
35388 knoppndvlem10
35397 knoppndvlem11
35398 knoppndvlem12
35399 knoppndvlem14
35401 knoppndvlem15
35402 knoppndvlem17
35404 knoppndvlem18
35405 knoppndvlem19
35406 knoppndvlem20
35407 knoppndvlem21
35408 cnndvlem1
35413 taupi
36204 iccioo01
36208 relowlpssretop
36245 sin2h
36478 cos2h
36479 tan2h
36480 poimirlem7
36495 poimirlem9
36497 opnmbllem0
36524 mblfinlem1
36525 mblfinlem2
36526 itg2addnclem
36539 isbnd2
36651 isbnd3
36652 heiborlem7
36685 12gcd5e1
40868 lcm2un
40879 lcmineqlem19
40912 lcmineqlem20
40913 lcmineqlem22
40915 3lexlogpow5ineq2
40920 3lexlogpow5ineq4
40921 3lexlogpow5ineq3
40922 3lexlogpow2ineq1
40923 3lexlogpow2ineq2
40924 3lexlogpow5ineq5
40925 aks4d1lem1
40927 aks4d1p1p3
40934 aks4d1p1p2
40935 aks4d1p1p4
40936 aks4d1p1p6
40938 aks4d1p1p7
40939 aks4d1p1p5
40940 aks4d1p1
40941 aks4d1p2
40942 aks4d1p3
40943 aks4d1p5
40945 aks4d1p6
40946 aks4d1p7d1
40947 aks4d1p7
40948 aks4d1p8
40952 aks4d1p9
40953 2np3bcnp1
40960 2ap1caineq
40961 2xp3dxp2ge1d
41022 oexpreposd
41212 remul02
41278 sn-0ne2
41279 remul01
41280 flt4lem7
41401 rabren3dioph
41553 pellexlem2
41568 pellexlem5
41571 pell14qrgapw
41614 pellfundex
41624 rmspecsqrtnq
41644 jm2.24nn
41698 jm2.17a
41699 jm2.17b
41700 jm2.17c
41701 acongrep
41719 acongeq
41722 jm2.22
41734 jm2.23
41735 jm2.20nn
41736 jm3.1lem2
41757 expdiophlem1
41760 sqrtcval
42392 imo72b2lem0
42917 mnringaddgdOLD
42977 lhe4.4ex1a
43088 isosctrlem1ALT
43695 sineq0ALT
43698 lt3addmuld
44011 suplesup
44049 infleinflem2
44081 infleinf
44082 sumnnodd
44346 0ellimcdiv
44365 sinaover2ne0
44584 stoweidlem13
44729 stoweidlem14
44730 stoweidlem26
44742 stoweidlem49
44765 stoweidlem52
44768 wallispilem4
44784 wallispilem5
44785 wallispi
44786 wallispi2lem1
44787 wallispi2lem2
44788 wallispi2
44789 stirlinglem1
44790 stirlinglem3
44792 stirlinglem5
44794 stirlinglem6
44795 stirlinglem7
44796 stirlinglem10
44799 stirlinglem11
44800 stirlinglem15
44804 stirlingr
44806 dirker2re
44808 dirkerval2
44810 dirkerre
44811 dirkerper
44812 dirkertrigeqlem1
44814 dirkertrigeqlem3
44816 dirkercncflem1
44819 dirkercncflem2
44820 dirkercncflem4
44822 fourierdlem24
44847 fourierdlem43
44866 fourierdlem44
44867 fourierdlem57
44879 fourierdlem58
44880 fourierdlem62
44884 fourierdlem66
44888 fourierdlem68
44890 fourierdlem72
44894 fourierdlem76
44898 fourierdlem78
44900 fourierdlem79
44901 fourierdlem94
44916 fourierdlem103
44925 fourierdlem104
44926 fourierdlem111
44933 fourierdlem113
44935 sqwvfoura
44944 sqwvfourb
44945 fourierswlem
44946 fouriersw
44947 etransclem23
44973 salexct2
45055 salexct3
45058 salgencntex
45059 salgensscntex
45060 sge0ad2en
45147 ovnsubaddlem1
45286 smfmullem4
45510 smf2id
45517 2leaddle2
46006 p1lep2
46008 fmtnoge3
46198 fmtnof1
46203 fmtnoprmfac2lem1
46234 fmtno4prmfac
46240 fmtno4prm
46243 2pwp1prm
46257 31prm
46265 sfprmdvdsmersenne
46271 lighneallem2
46274 lighneallem4a
46276 lighneallem4b
46277 requad01
46289 requad1
46290 requad2
46291 dfodd4
46327 nn0o1gt2ALTV
46362 nnoALTV
46363 nn0oALTV
46364 nn0e
46365 nneven
46366 perfectALTVlem1
46389 perfectALTVlem2
46390 341fppr2
46402 9fppr8
46405 fpprel2
46409 nfermltl2rev
46411 gbowgt5
46430 sbgoldbalt
46449 sgoldbeven3prm
46451 mogoldbb
46453 nnsum3primes4
46456 nnsum3primesgbe
46460 nnsum3primesle9
46462 nnsum4primesodd
46464 nnsum4primesoddALTV
46465 wtgoldbnnsum4prm
46470 bgoldbnnsum3prm
46472 cznnring
46854 ply1mulgsumlem2
47068 zlmodzxznm
47178 zlmodzxzldeplem
47179 difmodm1lt
47208 nn0eo
47214 flnn0div2ge
47219 rege1logbzge0
47245 fldivexpfllog2
47251 logbpw2m1
47253 fllog2
47254 blenpw2m1
47265 nnpw2blen
47266 nnolog2flm1
47276 blennngt2o2
47278 dig2nn1st
47291 dig2nn0
47297 dig2bits
47300 dignn0flhalflem1
47301 dignn0flhalflem2
47302 dignn0flhalf
47304 nn0sumshdiglemA
47305 ackval42
47382 rrx2xpref1o
47404 itscnhlc0yqe
47445 itsclquadb
47462 2itscp
47467 itscnhlinecirc02p
47471 sepfsepc
47560 |