Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3cn | Structured version Visualization version GIF version |
Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
3cn | ⊢ 3 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 11967 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2cn 11978 | . . 3 ⊢ 2 ∈ ℂ | |
3 | ax-1cn 10860 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10912 | . 2 ⊢ (2 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 3 ∈ ℂ |
Copyright terms: Public domain | W3C validator |