| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3cn | Structured version Visualization version GIF version | ||
| Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 3cn | ⊢ 3 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12330 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2cn 12341 | . . 3 ⊢ 2 ∈ ℂ | |
| 3 | ax-1cn 11213 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11267 | . 2 ⊢ (2 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2837 | 1 ⊢ 3 ∈ ℂ |
| Copyright terms: Public domain | W3C validator |