| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version | ||
| Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 9cn | ⊢ 9 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12256 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8cn 12283 | . . 3 ⊢ 8 ∈ ℂ | |
| 3 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11180 | . 2 ⊢ (8 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 8c8 12247 9c9 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 |
| This theorem is referenced by: 10m1e9 12745 9t2e18 12771 9t8e72 12777 9t9e81 12778 9t11e99 12779 0.999... 15847 cos2bnd 16156 3dvds 16301 3dvdsdec 16302 3dvds2dec 16303 2exp8 17059 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 sqrt2cxp2logb9e3 26709 mcubic 26757 cubic2 26758 cubic 26759 quartlem1 26767 log2tlbnd 26855 log2ublem3 26858 log2ub 26859 bposlem8 27202 ex-lcm 30387 9p10ne21 30399 1mhdrd 32836 hgt750lem2 34643 60gcd7e1 41993 3lexlogpow5ineq1 42042 3lexlogpow2ineq2 42047 3lexlogpow5ineq5 42048 sq9 42286 sum9cubes 42660 fmtno5lem4 47557 257prm 47562 fmtno4nprmfac193 47575 139prmALT 47597 127prm 47600 8exp8mod9 47737 nfermltl8rev 47743 evengpop3 47799 |
| Copyright terms: Public domain | W3C validator |