![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version |
Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
9cn | ⊢ 9 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12278 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8cn 12305 | . . 3 ⊢ 8 ∈ ℂ | |
3 | ax-1cn 11164 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11216 | . 2 ⊢ (8 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2829 | 1 ⊢ 9 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7405 ℂcc 11104 1c1 11107 + caddc 11109 8c8 12269 9c9 12270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-clel 2810 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 |
This theorem is referenced by: 10m1e9 12769 9t2e18 12795 9t8e72 12801 9t9e81 12802 9t11e99 12803 0.999... 15823 cos2bnd 16127 3dvds 16270 3dvdsdec 16271 3dvds2dec 16272 2exp8 17018 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 2503lem1 17066 2503lem2 17067 2503lem3 17068 2503prm 17069 4001lem1 17070 4001lem2 17071 4001lem3 17072 4001lem4 17073 sqrt2cxp2logb9e3 26293 mcubic 26341 cubic2 26342 cubic 26343 quartlem1 26351 log2tlbnd 26439 log2ublem3 26442 log2ub 26443 bposlem8 26783 ex-lcm 29700 9p10ne21 29712 1mhdrd 32069 hgt750lem2 33652 60gcd7e1 40858 3lexlogpow5ineq1 40907 3lexlogpow2ineq2 40912 3lexlogpow5ineq5 40913 fmtno5lem4 46210 257prm 46215 fmtno4nprmfac193 46228 139prmALT 46250 127prm 46253 8exp8mod9 46390 nfermltl8rev 46396 evengpop3 46452 |
Copyright terms: Public domain | W3C validator |