| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version | ||
| Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 9cn | ⊢ 9 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12232 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8cn 12259 | . . 3 ⊢ 8 ∈ ℂ | |
| 3 | ax-1cn 11102 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11156 | . 2 ⊢ (8 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 8c8 12223 9c9 12224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 |
| This theorem is referenced by: 10m1e9 12721 9t2e18 12747 9t8e72 12753 9t9e81 12754 9t11e99 12755 0.999... 15823 cos2bnd 16132 3dvds 16277 3dvdsdec 16278 3dvds2dec 16279 2exp8 17035 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem1 17083 2503lem2 17084 2503lem3 17085 2503prm 17086 4001lem1 17087 4001lem2 17088 4001lem3 17089 4001lem4 17090 sqrt2cxp2logb9e3 26742 mcubic 26790 cubic2 26791 cubic 26792 quartlem1 26800 log2tlbnd 26888 log2ublem3 26891 log2ub 26892 bposlem8 27235 ex-lcm 30437 9p10ne21 30449 1mhdrd 32886 hgt750lem2 34636 60gcd7e1 41986 3lexlogpow5ineq1 42035 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 sq9 42279 sum9cubes 42653 fmtno5lem4 47550 257prm 47555 fmtno4nprmfac193 47568 139prmALT 47590 127prm 47593 8exp8mod9 47730 nfermltl8rev 47736 evengpop3 47792 |
| Copyright terms: Public domain | W3C validator |