| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version | ||
| Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 9cn | ⊢ 9 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12263 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8cn 12290 | . . 3 ⊢ 8 ∈ ℂ | |
| 3 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11187 | . 2 ⊢ (8 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 9 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 8c8 12254 9c9 12255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 |
| This theorem is referenced by: 10m1e9 12752 9t2e18 12778 9t8e72 12784 9t9e81 12785 9t11e99 12786 0.999... 15854 cos2bnd 16163 3dvds 16308 3dvdsdec 16309 3dvds2dec 16310 2exp8 17066 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 sqrt2cxp2logb9e3 26716 mcubic 26764 cubic2 26765 cubic 26766 quartlem1 26774 log2tlbnd 26862 log2ublem3 26865 log2ub 26866 bposlem8 27209 ex-lcm 30394 9p10ne21 30406 1mhdrd 32843 hgt750lem2 34650 60gcd7e1 42000 3lexlogpow5ineq1 42049 3lexlogpow2ineq2 42054 3lexlogpow5ineq5 42055 sq9 42293 sum9cubes 42667 fmtno5lem4 47561 257prm 47566 fmtno4nprmfac193 47579 139prmALT 47601 127prm 47604 8exp8mod9 47741 nfermltl8rev 47747 evengpop3 47803 |
| Copyright terms: Public domain | W3C validator |