| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version | ||
| Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 9cn | ⊢ 9 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12198 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8cn 12225 | . . 3 ⊢ 8 ∈ ℂ | |
| 3 | ax-1cn 11067 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11121 | . 2 ⊢ (8 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 8c8 12189 9c9 12190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 |
| This theorem is referenced by: 10m1e9 12687 9t2e18 12713 9t8e72 12719 9t9e81 12720 9t11e99 12721 0.999... 15788 cos2bnd 16097 3dvds 16242 3dvdsdec 16243 3dvds2dec 16244 2exp8 17000 139prm 17035 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 sqrt2cxp2logb9e3 26707 mcubic 26755 cubic2 26756 cubic 26757 quartlem1 26765 log2tlbnd 26853 log2ublem3 26856 log2ub 26857 bposlem8 27200 ex-lcm 30402 9p10ne21 30414 1mhdrd 32856 hgt750lem2 34620 60gcd7e1 41982 3lexlogpow5ineq1 42031 3lexlogpow2ineq2 42036 3lexlogpow5ineq5 42037 sq9 42275 sum9cubes 42649 fmtno5lem4 47544 257prm 47549 fmtno4nprmfac193 47562 139prmALT 47584 127prm 47587 8exp8mod9 47724 nfermltl8rev 47730 evengpop3 47786 |
| Copyright terms: Public domain | W3C validator |