| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version | ||
| Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 9cn | ⊢ 9 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12310 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8cn 12337 | . . 3 ⊢ 8 ∈ ℂ | |
| 3 | ax-1cn 11187 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11241 | . 2 ⊢ (8 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 9 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 8c8 12301 9c9 12302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 |
| This theorem is referenced by: 10m1e9 12804 9t2e18 12830 9t8e72 12836 9t9e81 12837 9t11e99 12838 0.999... 15897 cos2bnd 16206 3dvds 16350 3dvdsdec 16351 3dvds2dec 16352 2exp8 17108 139prm 17143 163prm 17144 317prm 17145 631prm 17146 1259lem1 17150 1259lem2 17151 1259lem3 17152 1259lem4 17153 1259lem5 17154 2503lem1 17156 2503lem2 17157 2503lem3 17158 2503prm 17159 4001lem1 17160 4001lem2 17161 4001lem3 17162 4001lem4 17163 sqrt2cxp2logb9e3 26761 mcubic 26809 cubic2 26810 cubic 26811 quartlem1 26819 log2tlbnd 26907 log2ublem3 26910 log2ub 26911 bposlem8 27254 ex-lcm 30439 9p10ne21 30451 1mhdrd 32890 hgt750lem2 34684 60gcd7e1 42018 3lexlogpow5ineq1 42067 3lexlogpow2ineq2 42072 3lexlogpow5ineq5 42073 sq9 42347 sum9cubes 42695 fmtno5lem4 47570 257prm 47575 fmtno4nprmfac193 47588 139prmALT 47610 127prm 47613 8exp8mod9 47750 nfermltl8rev 47756 evengpop3 47812 |
| Copyright terms: Public domain | W3C validator |