Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version |
Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
9cn | ⊢ 9 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12043 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8cn 12070 | . . 3 ⊢ 8 ∈ ℂ | |
3 | ax-1cn 10929 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10981 | . 2 ⊢ (8 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 9 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 8c8 12034 9c9 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 |
This theorem is referenced by: 10m1e9 12533 9t2e18 12559 9t8e72 12565 9t9e81 12566 9t11e99 12567 0.999... 15593 cos2bnd 15897 3dvds 16040 3dvdsdec 16041 3dvds2dec 16042 2exp8 16790 139prm 16825 163prm 16826 317prm 16827 631prm 16828 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 2503lem1 16838 2503lem2 16839 2503lem3 16840 2503prm 16841 4001lem1 16842 4001lem2 16843 4001lem3 16844 4001lem4 16845 sqrt2cxp2logb9e3 25949 mcubic 25997 cubic2 25998 cubic 25999 quartlem1 26007 log2tlbnd 26095 log2ublem3 26098 log2ub 26099 bposlem8 26439 ex-lcm 28822 9p10ne21 28834 1mhdrd 31190 hgt750lem2 32632 60gcd7e1 40013 3lexlogpow5ineq1 40062 3lexlogpow2ineq2 40067 3lexlogpow5ineq5 40068 fmtno5lem4 45008 257prm 45013 fmtno4nprmfac193 45026 139prmALT 45048 127prm 45051 8exp8mod9 45188 nfermltl8rev 45194 evengpop3 45250 |
Copyright terms: Public domain | W3C validator |