Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version |
Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
9cn | ⊢ 9 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 11973 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8cn 12000 | . . 3 ⊢ 8 ∈ ℂ | |
3 | ax-1cn 10860 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10912 | . 2 ⊢ (8 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 9 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 8c8 11964 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 |
This theorem is referenced by: 10m1e9 12462 9t2e18 12488 9t8e72 12494 9t9e81 12495 9t11e99 12496 0.999... 15521 cos2bnd 15825 3dvds 15968 3dvdsdec 15969 3dvds2dec 15970 2exp8 16718 139prm 16753 163prm 16754 317prm 16755 631prm 16756 1259lem1 16760 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem1 16766 2503lem2 16767 2503lem3 16768 2503prm 16769 4001lem1 16770 4001lem2 16771 4001lem3 16772 4001lem4 16773 sqrt2cxp2logb9e3 25854 mcubic 25902 cubic2 25903 cubic 25904 quartlem1 25912 log2tlbnd 26000 log2ublem3 26003 log2ub 26004 bposlem8 26344 ex-lcm 28723 9p10ne21 28735 1mhdrd 31092 hgt750lem2 32532 60gcd7e1 39941 3lexlogpow5ineq1 39990 3lexlogpow2ineq2 39995 3lexlogpow5ineq5 39996 fmtno5lem4 44896 257prm 44901 fmtno4nprmfac193 44914 139prmALT 44936 127prm 44939 8exp8mod9 45076 nfermltl8rev 45082 evengpop3 45138 |
Copyright terms: Public domain | W3C validator |