| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9cn | Structured version Visualization version GIF version | ||
| Description: The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 9cn | ⊢ 9 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12195 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8cn 12222 | . . 3 ⊢ 8 ∈ ℂ | |
| 3 | ax-1cn 11064 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11118 | . 2 ⊢ (8 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 9 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 8c8 12186 9c9 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 |
| This theorem is referenced by: 10m1e9 12684 9t2e18 12710 9t8e72 12716 9t9e81 12717 9t11e99 12718 0.999... 15788 cos2bnd 16097 3dvds 16242 3dvdsdec 16243 3dvds2dec 16244 2exp8 17000 139prm 17035 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 sqrt2cxp2logb9e3 26736 mcubic 26784 cubic2 26785 cubic 26786 quartlem1 26794 log2tlbnd 26882 log2ublem3 26885 log2ub 26886 bposlem8 27229 ex-lcm 30438 9p10ne21 30450 1mhdrd 32896 hgt750lem2 34665 60gcd7e1 42108 3lexlogpow5ineq1 42157 3lexlogpow2ineq2 42162 3lexlogpow5ineq5 42163 sq9 42401 sum9cubes 42775 fmtno5lem4 47666 257prm 47671 fmtno4nprmfac193 47684 139prmALT 47706 127prm 47709 8exp8mod9 47846 nfermltl8rev 47852 evengpop3 47908 |
| Copyright terms: Public domain | W3C validator |