Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancomd | Structured version Visualization version GIF version |
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.) |
Ref | Expression |
---|---|
ancomd.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
ancomd | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
2 | ancom 460 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Copyright terms: Public domain | W3C validator |