MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfzslem Structured version   Visualization version   GIF version

Theorem telgsumfzslem 20030
Description: Lemma for telgsumfzs 20031 (induction step). (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfzs.b 𝐵 = (Base‘𝐺)
telgsumfzs.g (𝜑𝐺 ∈ Abel)
telgsumfzs.m = (-g𝐺)
Assertion
Ref Expression
telgsumfzslem ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑖,𝑀,𝑘   ,𝑖   𝜑,𝑖   𝑦,𝑖,𝑘
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐵(𝑦)   𝐶(𝑦,𝑘)   𝐺(𝑦,𝑘)   𝑀(𝑦)   (𝑦,𝑘)

Proof of Theorem telgsumfzslem
StepHypRef Expression
1 telgsumfzs.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2740 . . . . 5 (+g𝐺) = (+g𝐺)
3 telgsumfzs.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
43adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝐺 ∈ Abel)
5 ablcmn 19829 . . . . . . 7 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
64, 5syl 17 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝐺 ∈ CMnd)
76adantl 481 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ CMnd)
8 fzfid 14024 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑀...(𝑦 + 1)) ∈ Fin)
9 ablgrp 19827 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
103, 9syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
1110ad2antrl 727 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ Grp)
1211adantr 480 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → 𝐺 ∈ Grp)
13 fzelp1 13636 . . . . . . 7 (𝑖 ∈ (𝑀...(𝑦 + 1)) → 𝑖 ∈ (𝑀...((𝑦 + 1) + 1)))
14 simpr 484 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)
1514adantl 481 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)
16 rspcsbela 4461 . . . . . . 7 ((𝑖 ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝑖 / 𝑘𝐶𝐵)
1713, 15, 16syl2anr 596 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → 𝑖 / 𝑘𝐶𝐵)
18 fzp1elp1 13637 . . . . . . 7 (𝑖 ∈ (𝑀...(𝑦 + 1)) → (𝑖 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
19 rspcsbela 4461 . . . . . . 7 (((𝑖 + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝑖 + 1) / 𝑘𝐶𝐵)
2018, 15, 19syl2anr 596 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → (𝑖 + 1) / 𝑘𝐶𝐵)
21 telgsumfzs.m . . . . . . 7 = (-g𝐺)
221, 21grpsubcl 19060 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑖 / 𝑘𝐶𝐵(𝑖 + 1) / 𝑘𝐶𝐵) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
2312, 17, 20, 22syl3anc 1371 . . . . 5 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
24 fzp1disj 13643 . . . . . 6 ((𝑀...𝑦) ∩ {(𝑦 + 1)}) = ∅
2524a1i 11 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑀...𝑦) ∩ {(𝑦 + 1)}) = ∅)
26 fzsuc 13631 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
2726adantr 480 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
281, 2, 7, 8, 23, 25, 27gsummptfidmsplit 19972 . . . 4 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))))
2928adantr 480 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))))
30 simpr 484 . . . 4 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))
3110grpmndd 18986 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
3231ad2antrl 727 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ Mnd)
33 ovexd 7483 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑦 + 1) ∈ V)
34 peano2uz 12966 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (ℤ𝑀))
35 eluzfz2 13592 . . . . . . . . . 10 ((𝑦 + 1) ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...(𝑦 + 1)))
3634, 35syl 17 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...(𝑦 + 1)))
37 fzelp1 13636 . . . . . . . . 9 ((𝑦 + 1) ∈ (𝑀...(𝑦 + 1)) → (𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
3836, 37syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
39 rspcsbela 4461 . . . . . . . 8 (((𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝑦 + 1) / 𝑘𝐶𝐵)
4038, 14, 39syl2an 595 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑦 + 1) / 𝑘𝐶𝐵)
41 peano2uz 12966 . . . . . . . . . 10 ((𝑦 + 1) ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ𝑀))
4234, 41syl 17 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ𝑀))
43 eluzfz2 13592 . . . . . . . . 9 (((𝑦 + 1) + 1) ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
4442, 43syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
45 rspcsbela 4461 . . . . . . . 8 ((((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ((𝑦 + 1) + 1) / 𝑘𝐶𝐵)
4644, 14, 45syl2an 595 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑦 + 1) + 1) / 𝑘𝐶𝐵)
471, 21grpsubcl 19060 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦 + 1) / 𝑘𝐶𝐵((𝑦 + 1) + 1) / 𝑘𝐶𝐵) → ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶) ∈ 𝐵)
4811, 40, 46, 47syl3anc 1371 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶) ∈ 𝐵)
49 csbeq1 3924 . . . . . . . 8 (𝑖 = (𝑦 + 1) → 𝑖 / 𝑘𝐶 = (𝑦 + 1) / 𝑘𝐶)
50 oveq1 7455 . . . . . . . . 9 (𝑖 = (𝑦 + 1) → (𝑖 + 1) = ((𝑦 + 1) + 1))
5150csbeq1d 3925 . . . . . . . 8 (𝑖 = (𝑦 + 1) → (𝑖 + 1) / 𝑘𝐶 = ((𝑦 + 1) + 1) / 𝑘𝐶)
5249, 51oveq12d 7466 . . . . . . 7 (𝑖 = (𝑦 + 1) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5352adantl 481 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 = (𝑦 + 1)) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
541, 32, 33, 48, 53gsumsnd 19994 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5554adantr 480 . . . 4 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5630, 55oveq12d 7466 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))) = ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
57 eluzfz1 13591 . . . . . . 7 (((𝑦 + 1) + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...((𝑦 + 1) + 1)))
5842, 57syl 17 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...((𝑦 + 1) + 1)))
59 rspcsbela 4461 . . . . . 6 ((𝑀 ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
6058, 14, 59syl2an 595 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝑀 / 𝑘𝐶𝐵)
611, 2, 21grpnpncan 19075 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 / 𝑘𝐶𝐵(𝑦 + 1) / 𝑘𝐶𝐵((𝑦 + 1) + 1) / 𝑘𝐶𝐵)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6211, 60, 40, 46, 61syl13anc 1372 . . . 4 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6362adantr 480 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6429, 56, 633eqtrd 2784 . 2 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6564ex 412 1 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  csb 3921  cun 3974  cin 3975  c0 4352  {csn 4648  cmpt 5249  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187  cuz 12903  ...cfz 13567  Basecbs 17258  +gcplusg 17311   Σg cgsu 17500  Mndcmnd 18772  Grpcgrp 18973  -gcsg 18975  CMndccmn 19822  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-abl 19825
This theorem is referenced by:  telgsumfzs  20031
  Copyright terms: Public domain W3C validator