MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfzslem Structured version   Visualization version   GIF version

Theorem telgsumfzslem 19893
Description: Lemma for telgsumfzs 19894 (induction step). (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfzs.b 𝐵 = (Base‘𝐺)
telgsumfzs.g (𝜑𝐺 ∈ Abel)
telgsumfzs.m = (-g𝐺)
Assertion
Ref Expression
telgsumfzslem ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑖,𝑀,𝑘   ,𝑖   𝜑,𝑖   𝑦,𝑖,𝑘
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐵(𝑦)   𝐶(𝑦,𝑘)   𝐺(𝑦,𝑘)   𝑀(𝑦)   (𝑦,𝑘)

Proof of Theorem telgsumfzslem
StepHypRef Expression
1 telgsumfzs.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2724 . . . . 5 (+g𝐺) = (+g𝐺)
3 telgsumfzs.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
43adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝐺 ∈ Abel)
5 ablcmn 19692 . . . . . . 7 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
64, 5syl 17 . . . . . 6 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝐺 ∈ CMnd)
76adantl 481 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ CMnd)
8 fzfid 13934 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑀...(𝑦 + 1)) ∈ Fin)
9 ablgrp 19690 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
103, 9syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
1110ad2antrl 725 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ Grp)
1211adantr 480 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → 𝐺 ∈ Grp)
13 fzelp1 13549 . . . . . . 7 (𝑖 ∈ (𝑀...(𝑦 + 1)) → 𝑖 ∈ (𝑀...((𝑦 + 1) + 1)))
14 simpr 484 . . . . . . . 8 ((𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)
1514adantl 481 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)
16 rspcsbela 4427 . . . . . . 7 ((𝑖 ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝑖 / 𝑘𝐶𝐵)
1713, 15, 16syl2anr 596 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → 𝑖 / 𝑘𝐶𝐵)
18 fzp1elp1 13550 . . . . . . 7 (𝑖 ∈ (𝑀...(𝑦 + 1)) → (𝑖 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
19 rspcsbela 4427 . . . . . . 7 (((𝑖 + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝑖 + 1) / 𝑘𝐶𝐵)
2018, 15, 19syl2anr 596 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → (𝑖 + 1) / 𝑘𝐶𝐵)
21 telgsumfzs.m . . . . . . 7 = (-g𝐺)
221, 21grpsubcl 18935 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑖 / 𝑘𝐶𝐵(𝑖 + 1) / 𝑘𝐶𝐵) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
2312, 17, 20, 22syl3anc 1368 . . . . 5 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 ∈ (𝑀...(𝑦 + 1))) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
24 fzp1disj 13556 . . . . . 6 ((𝑀...𝑦) ∩ {(𝑦 + 1)}) = ∅
2524a1i 11 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑀...𝑦) ∩ {(𝑦 + 1)}) = ∅)
26 fzsuc 13544 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
2726adantr 480 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑀...(𝑦 + 1)) = ((𝑀...𝑦) ∪ {(𝑦 + 1)}))
281, 2, 7, 8, 23, 25, 27gsummptfidmsplit 19835 . . . 4 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))))
2928adantr 480 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))))
30 simpr 484 . . . 4 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶))
3110grpmndd 18863 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
3231ad2antrl 725 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝐺 ∈ Mnd)
33 ovexd 7436 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑦 + 1) ∈ V)
34 peano2uz 12881 . . . . . . . . . 10 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (ℤ𝑀))
35 eluzfz2 13505 . . . . . . . . . 10 ((𝑦 + 1) ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...(𝑦 + 1)))
3634, 35syl 17 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...(𝑦 + 1)))
37 fzelp1 13549 . . . . . . . . 9 ((𝑦 + 1) ∈ (𝑀...(𝑦 + 1)) → (𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
3836, 37syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → (𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
39 rspcsbela 4427 . . . . . . . 8 (((𝑦 + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → (𝑦 + 1) / 𝑘𝐶𝐵)
4038, 14, 39syl2an 595 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝑦 + 1) / 𝑘𝐶𝐵)
41 peano2uz 12881 . . . . . . . . . 10 ((𝑦 + 1) ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ𝑀))
4234, 41syl 17 . . . . . . . . 9 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (ℤ𝑀))
43 eluzfz2 13505 . . . . . . . . 9 (((𝑦 + 1) + 1) ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
4442, 43syl 17 . . . . . . . 8 (𝑦 ∈ (ℤ𝑀) → ((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)))
45 rspcsbela 4427 . . . . . . . 8 ((((𝑦 + 1) + 1) ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → ((𝑦 + 1) + 1) / 𝑘𝐶𝐵)
4644, 14, 45syl2an 595 . . . . . . 7 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑦 + 1) + 1) / 𝑘𝐶𝐵)
471, 21grpsubcl 18935 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦 + 1) / 𝑘𝐶𝐵((𝑦 + 1) + 1) / 𝑘𝐶𝐵) → ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶) ∈ 𝐵)
4811, 40, 46, 47syl3anc 1368 . . . . . 6 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶) ∈ 𝐵)
49 csbeq1 3888 . . . . . . . 8 (𝑖 = (𝑦 + 1) → 𝑖 / 𝑘𝐶 = (𝑦 + 1) / 𝑘𝐶)
50 oveq1 7408 . . . . . . . . 9 (𝑖 = (𝑦 + 1) → (𝑖 + 1) = ((𝑦 + 1) + 1))
5150csbeq1d 3889 . . . . . . . 8 (𝑖 = (𝑦 + 1) → (𝑖 + 1) / 𝑘𝐶 = ((𝑦 + 1) + 1) / 𝑘𝐶)
5249, 51oveq12d 7419 . . . . . . 7 (𝑖 = (𝑦 + 1) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5352adantl 481 . . . . . 6 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ 𝑖 = (𝑦 + 1)) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
541, 32, 33, 48, 53gsumsnd 19857 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → (𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5554adantr 480 . . . 4 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = ((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
5630, 55oveq12d 7419 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))(+g𝐺)(𝐺 Σg (𝑖 ∈ {(𝑦 + 1)} ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶)))) = ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
57 eluzfz1 13504 . . . . . . 7 (((𝑦 + 1) + 1) ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...((𝑦 + 1) + 1)))
5842, 57syl 17 . . . . . 6 (𝑦 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...((𝑦 + 1) + 1)))
59 rspcsbela 4427 . . . . . 6 ((𝑀 ∈ (𝑀...((𝑦 + 1) + 1)) ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵) → 𝑀 / 𝑘𝐶𝐵)
6058, 14, 59syl2an 595 . . . . 5 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → 𝑀 / 𝑘𝐶𝐵)
611, 2, 21grpnpncan 18950 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 / 𝑘𝐶𝐵(𝑦 + 1) / 𝑘𝐶𝐵((𝑦 + 1) + 1) / 𝑘𝐶𝐵)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6211, 60, 40, 46, 61syl13anc 1369 . . . 4 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6362adantr 480 . . 3 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → ((𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)(+g𝐺)((𝑦 + 1) / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6429, 56, 633eqtrd 2768 . 2 (((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) ∧ (𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶)) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶))
6564ex 412 1 ((𝑦 ∈ (ℤ𝑀) ∧ (𝜑 ∧ ∀𝑘 ∈ (𝑀...((𝑦 + 1) + 1))𝐶𝐵)) → ((𝐺 Σg (𝑖 ∈ (𝑀...𝑦) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 (𝑦 + 1) / 𝑘𝐶) → (𝐺 Σg (𝑖 ∈ (𝑀...(𝑦 + 1)) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝑀 / 𝑘𝐶 ((𝑦 + 1) + 1) / 𝑘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  csb 3885  cun 3938  cin 3939  c0 4314  {csn 4620  cmpt 5221  cfv 6533  (class class class)co 7401  1c1 11106   + caddc 11108  cuz 12818  ...cfz 13480  Basecbs 17140  +gcplusg 17193   Σg cgsu 17382  Mndcmnd 18654  Grpcgrp 18850  -gcsg 18852  CMndccmn 19685  Abelcabl 19686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-submnd 18701  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18983  df-cntz 19218  df-cmn 19687  df-abl 19688
This theorem is referenced by:  telgsumfzs  19894
  Copyright terms: Public domain W3C validator