MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdi Structured version   Visualization version   GIF version

Theorem mulgdi 19818
Description: Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgdi
StepHypRef Expression
1 ablcmn 19779 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
21ad2antrr 724 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
3 simpr 483 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4 simplr2 1213 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑋𝐵)
5 simplr3 1214 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑌𝐵)
6 mulgdi.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgdi.m . . . 4 · = (.g𝐺)
8 mulgdi.p . . . 4 + = (+g𝐺)
96, 7, 8mulgnn0di 19817 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
102, 3, 4, 5, 9syl13anc 1369 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
111ad2antrr 724 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
12 simpr 483 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
13 simpr2 1192 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1413adantr 479 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
15 simpr3 1193 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
1615adantr 479 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑌𝐵)
176, 7, 8mulgnn0di 19817 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (-𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
1811, 12, 14, 16, 17syl13anc 1369 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
19 ablgrp 19777 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2019adantr 479 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
21 simpr1 1191 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
226, 8grpcl 18929 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2320, 13, 15, 22syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
24 eqid 2726 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
256, 7, 24mulgneg 19080 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2620, 21, 23, 25syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2726adantr 479 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
286, 7, 24mulgneg 19080 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
2920, 21, 13, 28syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
306, 7, 24mulgneg 19080 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3120, 21, 15, 30syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3229, 31oveq12d 7432 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3332adantr 479 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3418, 27, 333eqtr3d 2774 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
35 simpl 481 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
366, 7mulgcl 19079 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
3720, 21, 13, 36syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
386, 7mulgcl 19079 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
3920, 21, 15, 38syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
406, 8, 24ablinvadd 19799 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4135, 37, 39, 40syl3anc 1368 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4241adantr 479 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4334, 42eqtr4d 2769 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))))
4443fveq2d 6895 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))))
456, 7mulgcl 19079 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4620, 21, 23, 45syl3anc 1368 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4746adantr 479 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
486, 24grpinvinv 18993 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
4920, 47, 48syl2an2r 683 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
506, 8grpcl 18929 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5120, 37, 39, 50syl3anc 1368 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5251adantr 479 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
536, 24grpinvinv 18993 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5420, 52, 53syl2an2r 683 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5544, 49, 543eqtr3d 2774 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
56 elznn0 12617 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
5756simprbi 495 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5821, 57syl 17 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5910, 55, 58mpjaodan 956 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  cfv 6544  (class class class)co 7414  cr 11146  -cneg 11484  0cn0 12516  cz 12602  Basecbs 17206  +gcplusg 17259  Grpcgrp 18921  invgcminusg 18922  .gcmg 19055  CMndccmn 19772  Abelcabl 19773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-n0 12517  df-z 12603  df-uz 12867  df-fz 13531  df-fzo 13674  df-seq 14014  df-0g 17449  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-grp 18924  df-minusg 18925  df-mulg 19056  df-cmn 19774  df-abl 19775
This theorem is referenced by:  mulgghm  19820  mulgsubdi  19821  odadd1  19840  odadd2  19841  oddvdssubg  19847  pgpfac1lem3a  20070  pgpfac1lem3  20071  zlmlmod  21510
  Copyright terms: Public domain W3C validator