MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdi Structured version   Visualization version   GIF version

Theorem mulgdi 18947
Description: Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgdi
StepHypRef Expression
1 ablcmn 18913 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
21ad2antrr 725 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
3 simpr 488 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4 simplr2 1213 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑋𝐵)
5 simplr3 1214 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑌𝐵)
6 mulgdi.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgdi.m . . . 4 · = (.g𝐺)
8 mulgdi.p . . . 4 + = (+g𝐺)
96, 7, 8mulgnn0di 18946 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
102, 3, 4, 5, 9syl13anc 1369 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
111ad2antrr 725 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
12 simpr 488 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
13 simpr2 1192 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1413adantr 484 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
15 simpr3 1193 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
1615adantr 484 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑌𝐵)
176, 7, 8mulgnn0di 18946 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (-𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
1811, 12, 14, 16, 17syl13anc 1369 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
19 ablgrp 18911 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2019adantr 484 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
21 simpr1 1191 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
226, 8grpcl 18111 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2320, 13, 15, 22syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
24 eqid 2824 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
256, 7, 24mulgneg 18246 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2620, 21, 23, 25syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2726adantr 484 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
286, 7, 24mulgneg 18246 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
2920, 21, 13, 28syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
306, 7, 24mulgneg 18246 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3120, 21, 15, 30syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3229, 31oveq12d 7167 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3332adantr 484 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3418, 27, 333eqtr3d 2867 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
35 simpl 486 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
366, 7mulgcl 18245 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
3720, 21, 13, 36syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
386, 7mulgcl 18245 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
3920, 21, 15, 38syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
406, 8, 24ablinvadd 18930 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4135, 37, 39, 40syl3anc 1368 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4241adantr 484 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4334, 42eqtr4d 2862 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))))
4443fveq2d 6665 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))))
456, 7mulgcl 18245 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4620, 21, 23, 45syl3anc 1368 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4746adantr 484 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
486, 24grpinvinv 18166 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
4920, 47, 48syl2an2r 684 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
506, 8grpcl 18111 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5120, 37, 39, 50syl3anc 1368 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5251adantr 484 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
536, 24grpinvinv 18166 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5420, 52, 53syl2an2r 684 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5544, 49, 543eqtr3d 2867 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
56 elznn0 11993 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
5756simprbi 500 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5821, 57syl 17 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5910, 55, 58mpjaodan 956 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  cfv 6343  (class class class)co 7149  cr 10534  -cneg 10869  0cn0 11894  cz 11978  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103  invgcminusg 18104  .gcmg 18224  CMndccmn 18906  Abelcabl 18907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-seq 13374  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-mulg 18225  df-cmn 18908  df-abl 18909
This theorem is referenced by:  mulgghm  18949  mulgsubdi  18950  odadd1  18968  odadd2  18969  oddvdssubg  18975  pgpfac1lem3a  19198  pgpfac1lem3  19199  zlmlmod  20223
  Copyright terms: Public domain W3C validator