MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdi Structured version   Visualization version   GIF version

Theorem mulgdi 19723
Description: Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgdi
StepHypRef Expression
1 ablcmn 19684 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
21ad2antrr 726 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
3 simpr 484 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4 simplr2 1217 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑋𝐵)
5 simplr3 1218 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑌𝐵)
6 mulgdi.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgdi.m . . . 4 · = (.g𝐺)
8 mulgdi.p . . . 4 + = (+g𝐺)
96, 7, 8mulgnn0di 19722 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
102, 3, 4, 5, 9syl13anc 1374 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
111ad2antrr 726 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
12 simpr 484 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
13 simpr2 1196 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1413adantr 480 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
15 simpr3 1197 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
1615adantr 480 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑌𝐵)
176, 7, 8mulgnn0di 19722 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (-𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
1811, 12, 14, 16, 17syl13anc 1374 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
19 ablgrp 19682 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2019adantr 480 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
21 simpr1 1195 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
226, 8grpcl 18838 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2320, 13, 15, 22syl3anc 1373 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
24 eqid 2729 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
256, 7, 24mulgneg 18989 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2620, 21, 23, 25syl3anc 1373 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2726adantr 480 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
286, 7, 24mulgneg 18989 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
2920, 21, 13, 28syl3anc 1373 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
306, 7, 24mulgneg 18989 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3120, 21, 15, 30syl3anc 1373 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3229, 31oveq12d 7371 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3332adantr 480 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3418, 27, 333eqtr3d 2772 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
35 simpl 482 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
366, 7mulgcl 18988 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
3720, 21, 13, 36syl3anc 1373 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
386, 7mulgcl 18988 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
3920, 21, 15, 38syl3anc 1373 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
406, 8, 24ablinvadd 19704 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4135, 37, 39, 40syl3anc 1373 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4241adantr 480 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4334, 42eqtr4d 2767 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))))
4443fveq2d 6830 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))))
456, 7mulgcl 18988 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4620, 21, 23, 45syl3anc 1373 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4746adantr 480 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
486, 24grpinvinv 18902 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
4920, 47, 48syl2an2r 685 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
506, 8grpcl 18838 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5120, 37, 39, 50syl3anc 1373 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5251adantr 480 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
536, 24grpinvinv 18902 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5420, 52, 53syl2an2r 685 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5544, 49, 543eqtr3d 2772 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
56 elznn0 12504 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
5756simprbi 496 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5821, 57syl 17 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5910, 55, 58mpjaodan 960 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cr 11027  -cneg 11366  0cn0 12402  cz 12489  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830  invgcminusg 18831  .gcmg 18964  CMndccmn 19677  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-mulg 18965  df-cmn 19679  df-abl 19680
This theorem is referenced by:  mulgghm  19725  mulgsubdi  19726  odadd1  19745  odadd2  19746  oddvdssubg  19752  pgpfac1lem3a  19975  pgpfac1lem3  19976  zlmlmod  21447
  Copyright terms: Public domain W3C validator