Proof of Theorem mulgdi
| Step | Hyp | Ref
| Expression |
| 1 | | ablcmn 19805 |
. . . 4
⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| 2 | 1 | ad2antrr 726 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd) |
| 3 | | simpr 484 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈
ℕ0) |
| 4 | | simplr2 1217 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
| 5 | | simplr3 1218 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑌 ∈ 𝐵) |
| 6 | | mulgdi.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
| 7 | | mulgdi.m |
. . . 4
⊢ · =
(.g‘𝐺) |
| 8 | | mulgdi.p |
. . . 4
⊢ + =
(+g‘𝐺) |
| 9 | 6, 7, 8 | mulgnn0di 19843 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
| 10 | 2, 3, 4, 5, 9 | syl13anc 1374 |
. 2
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
| 11 | 1 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd) |
| 12 | | simpr 484 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈
ℕ0) |
| 13 | | simpr2 1196 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 14 | 13 | adantr 480 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
| 15 | | simpr3 1197 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑌 ∈ 𝐵) |
| 17 | 6, 7, 8 | mulgnn0di 19843 |
. . . . . . 7
⊢ ((𝐺 ∈ CMnd ∧ (-𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌))) |
| 18 | 11, 12, 14, 16, 17 | syl13anc 1374 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌))) |
| 19 | | ablgrp 19803 |
. . . . . . . . 9
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Grp) |
| 21 | | simpr1 1195 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑀 ∈ ℤ) |
| 22 | 6, 8 | grpcl 18959 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 23 | 20, 13, 15, 22 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + 𝑌) ∈ 𝐵) |
| 24 | | eqid 2737 |
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 25 | 6, 7, 24 | mulgneg 19110 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (-𝑀 · (𝑋 + 𝑌)) = ((invg‘𝐺)‘(𝑀 · (𝑋 + 𝑌)))) |
| 26 | 20, 21, 23, 25 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((invg‘𝐺)‘(𝑀 · (𝑋 + 𝑌)))) |
| 27 | 26 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((invg‘𝐺)‘(𝑀 · (𝑋 + 𝑌)))) |
| 28 | 6, 7, 24 | mulgneg 19110 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑀 · 𝑋) = ((invg‘𝐺)‘(𝑀 · 𝑋))) |
| 29 | 20, 21, 13, 28 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (-𝑀 · 𝑋) = ((invg‘𝐺)‘(𝑀 · 𝑋))) |
| 30 | 6, 7, 24 | mulgneg 19110 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (-𝑀 · 𝑌) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
| 31 | 20, 21, 15, 30 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (-𝑀 · 𝑌) = ((invg‘𝐺)‘(𝑀 · 𝑌))) |
| 32 | 29, 31 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg‘𝐺)‘(𝑀 · 𝑋)) +
((invg‘𝐺)‘(𝑀 · 𝑌)))) |
| 33 | 32 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg‘𝐺)‘(𝑀 · 𝑋)) +
((invg‘𝐺)‘(𝑀 · 𝑌)))) |
| 34 | 18, 27, 33 | 3eqtr3d 2785 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) →
((invg‘𝐺)‘(𝑀 · (𝑋 + 𝑌))) = (((invg‘𝐺)‘(𝑀 · 𝑋)) +
((invg‘𝐺)‘(𝑀 · 𝑌)))) |
| 35 | | simpl 482 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Abel) |
| 36 | 6, 7 | mulgcl 19109 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
| 37 | 20, 21, 13, 36 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) |
| 38 | 6, 7 | mulgcl 19109 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵) → (𝑀 · 𝑌) ∈ 𝐵) |
| 39 | 20, 21, 15, 38 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · 𝑌) ∈ 𝐵) |
| 40 | 6, 8, 24 | ablinvadd 19825 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((invg‘𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg‘𝐺)‘(𝑀 · 𝑋)) +
((invg‘𝐺)‘(𝑀 · 𝑌)))) |
| 41 | 35, 37, 39, 40 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((invg‘𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg‘𝐺)‘(𝑀 · 𝑋)) +
((invg‘𝐺)‘(𝑀 · 𝑌)))) |
| 42 | 41 | adantr 480 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) →
((invg‘𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg‘𝐺)‘(𝑀 · 𝑋)) +
((invg‘𝐺)‘(𝑀 · 𝑌)))) |
| 43 | 34, 42 | eqtr4d 2780 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) →
((invg‘𝐺)‘(𝑀 · (𝑋 + 𝑌))) = ((invg‘𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) |
| 44 | 43 | fveq2d 6910 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) →
((invg‘𝐺)‘((invg‘𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = ((invg‘𝐺)‘((invg‘𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))))) |
| 45 | 6, 7 | mulgcl 19109 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) |
| 46 | 20, 21, 23, 45 | syl3anc 1373 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) |
| 47 | 46 | adantr 480 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) |
| 48 | 6, 24 | grpinvinv 19023 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌))) |
| 49 | 20, 47, 48 | syl2an2r 685 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) →
((invg‘𝐺)‘((invg‘𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌))) |
| 50 | 6, 8 | grpcl 18959 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) |
| 51 | 20, 37, 39, 50 | syl3anc 1373 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) |
| 52 | 51 | adantr 480 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) |
| 53 | 6, 24 | grpinvinv 19023 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
| 54 | 20, 52, 53 | syl2an2r 685 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) →
((invg‘𝐺)‘((invg‘𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
| 55 | 44, 49, 54 | 3eqtr3d 2785 |
. 2
⊢ (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
| 56 | | elznn0 12628 |
. . . 4
⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨
-𝑀 ∈
ℕ0))) |
| 57 | 56 | simprbi 496 |
. . 3
⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨
-𝑀 ∈
ℕ0)) |
| 58 | 21, 57 | syl 17 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈
ℕ0)) |
| 59 | 10, 55, 58 | mpjaodan 961 |
1
⊢ ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |