MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdi Structured version   Visualization version   GIF version

Theorem mulgdi 18949
Description: Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgdi
StepHypRef Expression
1 ablcmn 18915 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
21ad2antrr 724 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
3 simpr 487 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4 simplr2 1212 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑋𝐵)
5 simplr3 1213 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑌𝐵)
6 mulgdi.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgdi.m . . . 4 · = (.g𝐺)
8 mulgdi.p . . . 4 + = (+g𝐺)
96, 7, 8mulgnn0di 18948 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
102, 3, 4, 5, 9syl13anc 1368 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
111ad2antrr 724 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
12 simpr 487 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
13 simpr2 1191 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1413adantr 483 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
15 simpr3 1192 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
1615adantr 483 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑌𝐵)
176, 7, 8mulgnn0di 18948 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (-𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
1811, 12, 14, 16, 17syl13anc 1368 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
19 ablgrp 18913 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2019adantr 483 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
21 simpr1 1190 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
226, 8grpcl 18113 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2320, 13, 15, 22syl3anc 1367 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
24 eqid 2823 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
256, 7, 24mulgneg 18248 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2620, 21, 23, 25syl3anc 1367 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2726adantr 483 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
286, 7, 24mulgneg 18248 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
2920, 21, 13, 28syl3anc 1367 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
306, 7, 24mulgneg 18248 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3120, 21, 15, 30syl3anc 1367 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3229, 31oveq12d 7176 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3332adantr 483 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3418, 27, 333eqtr3d 2866 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
35 simpl 485 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
366, 7mulgcl 18247 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
3720, 21, 13, 36syl3anc 1367 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
386, 7mulgcl 18247 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
3920, 21, 15, 38syl3anc 1367 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
406, 8, 24ablinvadd 18932 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4135, 37, 39, 40syl3anc 1367 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4241adantr 483 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4334, 42eqtr4d 2861 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))))
4443fveq2d 6676 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))))
456, 7mulgcl 18247 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4620, 21, 23, 45syl3anc 1367 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4746adantr 483 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
486, 24grpinvinv 18168 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
4920, 47, 48syl2an2r 683 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
506, 8grpcl 18113 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5120, 37, 39, 50syl3anc 1367 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5251adantr 483 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
536, 24grpinvinv 18168 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5420, 52, 53syl2an2r 683 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5544, 49, 543eqtr3d 2866 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
56 elznn0 11999 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
5756simprbi 499 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5821, 57syl 17 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5910, 55, 58mpjaodan 955 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  cr 10538  -cneg 10873  0cn0 11900  cz 11984  Basecbs 16485  +gcplusg 16567  Grpcgrp 18105  invgcminusg 18106  .gcmg 18226  CMndccmn 18908  Abelcabl 18909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-mulg 18227  df-cmn 18910  df-abl 18911
This theorem is referenced by:  mulgghm  18951  mulgsubdi  18952  odadd1  18970  odadd2  18971  oddvdssubg  18977  pgpfac1lem3a  19200  pgpfac1lem3  19201  zlmlmod  20672
  Copyright terms: Public domain W3C validator