MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdi Structured version   Visualization version   GIF version

Theorem mulgdi 18940
Description: Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgdi
StepHypRef Expression
1 ablcmn 18905 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
21ad2antrr 725 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
3 simpr 488 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4 simplr2 1213 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑋𝐵)
5 simplr3 1214 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → 𝑌𝐵)
6 mulgdi.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgdi.m . . . 4 · = (.g𝐺)
8 mulgdi.p . . . 4 + = (+g𝐺)
96, 7, 8mulgnn0di 18939 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
102, 3, 4, 5, 9syl13anc 1369 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
111ad2antrr 725 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝐺 ∈ CMnd)
12 simpr 488 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → -𝑀 ∈ ℕ0)
13 simpr2 1192 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1413adantr 484 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑋𝐵)
15 simpr3 1193 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
1615adantr 484 . . . . . . 7 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → 𝑌𝐵)
176, 7, 8mulgnn0di 18939 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (-𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
1811, 12, 14, 16, 17syl13anc 1369 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)))
19 ablgrp 18903 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2019adantr 484 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
21 simpr1 1191 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
226, 8grpcl 18103 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2320, 13, 15, 22syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
24 eqid 2798 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
256, 7, 24mulgneg 18238 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2620, 21, 23, 25syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
2726adantr 484 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (-𝑀 · (𝑋 + 𝑌)) = ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))))
286, 7, 24mulgneg 18238 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
2920, 21, 13, 28syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
306, 7, 24mulgneg 18238 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3120, 21, 15, 30syl3anc 1368 . . . . . . . 8 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (-𝑀 · 𝑌) = ((invg𝐺)‘(𝑀 · 𝑌)))
3229, 31oveq12d 7153 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3332adantr 484 . . . . . 6 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((-𝑀 · 𝑋) + (-𝑀 · 𝑌)) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
3418, 27, 333eqtr3d 2841 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
35 simpl 486 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
366, 7mulgcl 18237 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
3720, 21, 13, 36syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
386, 7mulgcl 18237 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
3920, 21, 15, 38syl3anc 1368 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
406, 8, 24ablinvadd 18923 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4135, 37, 39, 40syl3anc 1368 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4241adantr 484 . . . . 5 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))) = (((invg𝐺)‘(𝑀 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑌))))
4334, 42eqtr4d 2836 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘(𝑀 · (𝑋 + 𝑌))) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌))))
4443fveq2d 6649 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))))
456, 7mulgcl 18237 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4620, 21, 23, 45syl3anc 1368 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
4746adantr 484 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵)
486, 24grpinvinv 18158 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 · (𝑋 + 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
4920, 47, 48syl2an2r 684 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘(𝑀 · (𝑋 + 𝑌)))) = (𝑀 · (𝑋 + 𝑌)))
506, 8grpcl 18103 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5120, 37, 39, 50syl3anc 1368 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
5251adantr 484 . . . 4 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵)
536, 24grpinvinv 18158 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑀 · 𝑌)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5420, 52, 53syl2an2r 684 . . 3 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑀 · 𝑌)))) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
5544, 49, 543eqtr3d 2841 . 2 (((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) ∧ -𝑀 ∈ ℕ0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
56 elznn0 11984 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0)))
5756simprbi 500 . . 3 (𝑀 ∈ ℤ → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5821, 57syl 17 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ0 ∨ -𝑀 ∈ ℕ0))
5910, 55, 58mpjaodan 956 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cr 10525  -cneg 10860  0cn0 11885  cz 11969  Basecbs 16475  +gcplusg 16557  Grpcgrp 18095  invgcminusg 18096  .gcmg 18216  CMndccmn 18898  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mulg 18217  df-cmn 18900  df-abl 18901
This theorem is referenced by:  mulgghm  18942  mulgsubdi  18943  odadd1  18961  odadd2  18962  oddvdssubg  18968  pgpfac1lem3a  19191  pgpfac1lem3  19192  zlmlmod  20216
  Copyright terms: Public domain W3C validator