| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . 2
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 2 |  | eqid 2736 | . 2
⊢
(Base‘𝑁) =
(Base‘𝑁) | 
| 3 |  | eqid 2736 | . 2
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 4 |  | ghmplusg.p | . 2
⊢  + =
(+g‘𝑁) | 
| 5 |  | ghmgrp1 19237 | . . 3
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑀 ∈ Grp) | 
| 6 | 5 | 3ad2ant3 1135 | . 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑀 ∈ Grp) | 
| 7 |  | ghmgrp2 19238 | . . 3
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp) | 
| 8 | 7 | 3ad2ant3 1135 | . 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑁 ∈ Grp) | 
| 9 | 2, 4 | grpcl 18960 | . . . . 5
⊢ ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) | 
| 10 | 9 | 3expb 1120 | . . . 4
⊢ ((𝑁 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) | 
| 11 | 8, 10 | sylan 580 | . . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) | 
| 12 | 1, 2 | ghmf 19239 | . . . 4
⊢ (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) | 
| 13 | 12 | 3ad2ant2 1134 | . . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) | 
| 14 | 1, 2 | ghmf 19239 | . . . 4
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) | 
| 15 | 14 | 3ad2ant3 1135 | . . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) | 
| 16 |  | fvexd 6920 | . . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (Base‘𝑀) ∈ V) | 
| 17 |  | inidm 4226 | . . 3
⊢
((Base‘𝑀)
∩ (Base‘𝑀)) =
(Base‘𝑀) | 
| 18 | 11, 13, 15, 16, 16, 17 | off 7716 | . 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘f + 𝐺):(Base‘𝑀)⟶(Base‘𝑁)) | 
| 19 | 1, 3, 4 | ghmlin 19240 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) | 
| 20 | 19 | 3expb 1120 | . . . . . 6
⊢ ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) | 
| 21 | 20 | 3ad2antl2 1186 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) | 
| 22 | 1, 3, 4 | ghmlin 19240 | . . . . . . 7
⊢ ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) | 
| 23 | 22 | 3expb 1120 | . . . . . 6
⊢ ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) | 
| 24 | 23 | 3ad2antl3 1187 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) | 
| 25 | 21, 24 | oveq12d 7450 | . . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦))) = (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦)))) | 
| 26 |  | simpl1 1191 | . . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ Abel) | 
| 27 |  | ablcmn 19806 | . . . . . 6
⊢ (𝑁 ∈ Abel → 𝑁 ∈ CMnd) | 
| 28 | 26, 27 | syl 17 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ CMnd) | 
| 29 | 13 | ffvelcdmda 7103 | . . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘𝑥) ∈ (Base‘𝑁)) | 
| 30 | 29 | adantrr 717 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘𝑥) ∈ (Base‘𝑁)) | 
| 31 | 13 | ffvelcdmda 7103 | . . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘𝑦) ∈ (Base‘𝑁)) | 
| 32 | 31 | adantrl 716 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘𝑦) ∈ (Base‘𝑁)) | 
| 33 | 15 | ffvelcdmda 7103 | . . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐺‘𝑥) ∈ (Base‘𝑁)) | 
| 34 | 33 | adantrr 717 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘𝑥) ∈ (Base‘𝑁)) | 
| 35 | 15 | ffvelcdmda 7103 | . . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘𝑦) ∈ (Base‘𝑁)) | 
| 36 | 35 | adantrl 716 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘𝑦) ∈ (Base‘𝑁)) | 
| 37 | 2, 4 | cmn4 19820 | . . . . 5
⊢ ((𝑁 ∈ CMnd ∧ ((𝐹‘𝑥) ∈ (Base‘𝑁) ∧ (𝐹‘𝑦) ∈ (Base‘𝑁)) ∧ ((𝐺‘𝑥) ∈ (Base‘𝑁) ∧ (𝐺‘𝑦) ∈ (Base‘𝑁))) → (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) | 
| 38 | 28, 30, 32, 34, 36, 37 | syl122anc 1380 | . . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) | 
| 39 | 25, 38 | eqtrd 2776 | . . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) | 
| 40 | 13 | ffnd 6736 | . . . . 5
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹 Fn (Base‘𝑀)) | 
| 41 | 40 | adantr 480 | . . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀)) | 
| 42 | 15 | ffnd 6736 | . . . . 5
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺 Fn (Base‘𝑀)) | 
| 43 | 42 | adantr 480 | . . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀)) | 
| 44 |  | fvexd 6920 | . . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V) | 
| 45 | 1, 3 | grpcl 18960 | . . . . . 6
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) | 
| 46 | 45 | 3expb 1120 | . . . . 5
⊢ ((𝑀 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) | 
| 47 | 6, 46 | sylan 580 | . . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) | 
| 48 |  | fnfvof 7715 | . . . 4
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦)))) | 
| 49 | 41, 43, 44, 47, 48 | syl22anc 838 | . . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦)))) | 
| 50 |  | simprl 770 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀)) | 
| 51 |  | fnfvof 7715 | . . . . 5
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑥 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) | 
| 52 | 41, 43, 44, 50, 51 | syl22anc 838 | . . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) | 
| 53 |  | simprr 772 | . . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀)) | 
| 54 |  | fnfvof 7715 | . . . . 5
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑦) = ((𝐹‘𝑦) + (𝐺‘𝑦))) | 
| 55 | 41, 43, 44, 53, 54 | syl22anc 838 | . . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑦) = ((𝐹‘𝑦) + (𝐺‘𝑦))) | 
| 56 | 52, 55 | oveq12d 7450 | . . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹 ∘f + 𝐺)‘𝑥) + ((𝐹 ∘f + 𝐺)‘𝑦)) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) | 
| 57 | 39, 49, 56 | 3eqtr4d 2786 | . 2
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = (((𝐹 ∘f + 𝐺)‘𝑥) + ((𝐹 ∘f + 𝐺)‘𝑦))) | 
| 58 | 1, 2, 3, 4, 6, 8, 18, 57 | isghmd 19244 | 1
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁)) |