MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmplusg Structured version   Visualization version   GIF version

Theorem ghmplusg 18959
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
ghmplusg.p + = (+g𝑁)
Assertion
Ref Expression
ghmplusg ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 GrpHom 𝑁))

Proof of Theorem ghmplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2798 . 2 (Base‘𝑁) = (Base‘𝑁)
3 eqid 2798 . 2 (+g𝑀) = (+g𝑀)
4 ghmplusg.p . 2 + = (+g𝑁)
5 ghmgrp1 18352 . . 3 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑀 ∈ Grp)
653ad2ant3 1132 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑀 ∈ Grp)
7 ghmgrp2 18353 . . 3 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp)
873ad2ant3 1132 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑁 ∈ Grp)
92, 4grpcl 18103 . . . . 5 ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
1093expb 1117 . . . 4 ((𝑁 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
118, 10sylan 583 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
121, 2ghmf 18354 . . . 4 (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
13123ad2ant2 1131 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
141, 2ghmf 18354 . . . 4 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
15143ad2ant3 1132 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
16 fvexd 6660 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (Base‘𝑀) ∈ V)
17 inidm 4145 . . 3 ((Base‘𝑀) ∩ (Base‘𝑀)) = (Base‘𝑀)
1811, 13, 15, 16, 16, 17off 7404 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹f + 𝐺):(Base‘𝑀)⟶(Base‘𝑁))
191, 3, 4ghmlin 18355 . . . . . . 7 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
20193expb 1117 . . . . . 6 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
21203ad2antl2 1183 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
221, 3, 4ghmlin 18355 . . . . . . 7 ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
23223expb 1117 . . . . . 6 ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
24233ad2antl3 1184 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
2521, 24oveq12d 7153 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))) = (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))))
26 simpl1 1188 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ Abel)
27 ablcmn 18905 . . . . . 6 (𝑁 ∈ Abel → 𝑁 ∈ CMnd)
2826, 27syl 17 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ CMnd)
2913ffvelrnda 6828 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹𝑥) ∈ (Base‘𝑁))
3029adantrr 716 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹𝑥) ∈ (Base‘𝑁))
3113ffvelrnda 6828 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹𝑦) ∈ (Base‘𝑁))
3231adantrl 715 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹𝑦) ∈ (Base‘𝑁))
3315ffvelrnda 6828 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐺𝑥) ∈ (Base‘𝑁))
3433adantrr 716 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑥) ∈ (Base‘𝑁))
3515ffvelrnda 6828 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺𝑦) ∈ (Base‘𝑁))
3635adantrl 715 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
372, 4cmn4 18918 . . . . 5 ((𝑁 ∈ CMnd ∧ ((𝐹𝑥) ∈ (Base‘𝑁) ∧ (𝐹𝑦) ∈ (Base‘𝑁)) ∧ ((𝐺𝑥) ∈ (Base‘𝑁) ∧ (𝐺𝑦) ∈ (Base‘𝑁))) → (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
3828, 30, 32, 34, 36, 37syl122anc 1376 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
3925, 38eqtrd 2833 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
4013ffnd 6488 . . . . 5 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹 Fn (Base‘𝑀))
4140adantr 484 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀))
4215ffnd 6488 . . . . 5 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺 Fn (Base‘𝑀))
4342adantr 484 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀))
44 fvexd 6660 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V)
451, 3grpcl 18103 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
46453expb 1117 . . . . 5 ((𝑀 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
476, 46sylan 583 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
48 fnfvof 7403 . . . 4 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥(+g𝑀)𝑦)) = ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))))
4941, 43, 44, 47, 48syl22anc 837 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥(+g𝑀)𝑦)) = ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))))
50 simprl 770 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀))
51 fnfvof 7403 . . . . 5 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑥 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
5241, 43, 44, 50, 51syl22anc 837 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
53 simprr 772 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
54 fnfvof 7403 . . . . 5 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5541, 43, 44, 53, 54syl22anc 837 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5652, 55oveq12d 7153 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹f + 𝐺)‘𝑥) + ((𝐹f + 𝐺)‘𝑦)) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
5739, 49, 563eqtr4d 2843 . 2 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥(+g𝑀)𝑦)) = (((𝐹f + 𝐺)‘𝑥) + ((𝐹f + 𝐺)‘𝑦)))
581, 2, 3, 4, 6, 8, 18, 57isghmd 18359 1 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 GrpHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  +gcplusg 16557  Grpcgrp 18095   GrpHom cghm 18347  CMndccmn 18898  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-ghm 18348  df-cmn 18900  df-abl 18901
This theorem is referenced by:  lmhmplusg  19809  nmotri  23345  nghmplusg  23346
  Copyright terms: Public domain W3C validator