MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmplusg Structured version   Visualization version   GIF version

Theorem ghmplusg 19755
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
ghmplusg.p + = (+g𝑁)
Assertion
Ref Expression
ghmplusg ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 GrpHom 𝑁))

Proof of Theorem ghmplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2730 . 2 (Base‘𝑁) = (Base‘𝑁)
3 eqid 2730 . 2 (+g𝑀) = (+g𝑀)
4 ghmplusg.p . 2 + = (+g𝑁)
5 ghmgrp1 19132 . . 3 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑀 ∈ Grp)
653ad2ant3 1133 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑀 ∈ Grp)
7 ghmgrp2 19133 . . 3 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp)
873ad2ant3 1133 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑁 ∈ Grp)
92, 4grpcl 18863 . . . . 5 ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
1093expb 1118 . . . 4 ((𝑁 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
118, 10sylan 578 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁))
121, 2ghmf 19134 . . . 4 (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
13123ad2ant2 1132 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
141, 2ghmf 19134 . . . 4 (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
15143ad2ant3 1133 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
16 fvexd 6905 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (Base‘𝑀) ∈ V)
17 inidm 4217 . . 3 ((Base‘𝑀) ∩ (Base‘𝑀)) = (Base‘𝑀)
1811, 13, 15, 16, 16, 17off 7690 . 2 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹f + 𝐺):(Base‘𝑀)⟶(Base‘𝑁))
191, 3, 4ghmlin 19135 . . . . . . 7 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
20193expb 1118 . . . . . 6 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
21203ad2antl2 1184 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g𝑀)𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
221, 3, 4ghmlin 19135 . . . . . . 7 ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
23223expb 1118 . . . . . 6 ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
24233ad2antl3 1185 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g𝑀)𝑦)) = ((𝐺𝑥) + (𝐺𝑦)))
2521, 24oveq12d 7429 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))) = (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))))
26 simpl1 1189 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ Abel)
27 ablcmn 19696 . . . . . 6 (𝑁 ∈ Abel → 𝑁 ∈ CMnd)
2826, 27syl 17 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ CMnd)
2913ffvelcdmda 7085 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹𝑥) ∈ (Base‘𝑁))
3029adantrr 713 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹𝑥) ∈ (Base‘𝑁))
3113ffvelcdmda 7085 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹𝑦) ∈ (Base‘𝑁))
3231adantrl 712 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹𝑦) ∈ (Base‘𝑁))
3315ffvelcdmda 7085 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐺𝑥) ∈ (Base‘𝑁))
3433adantrr 713 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑥) ∈ (Base‘𝑁))
3515ffvelcdmda 7085 . . . . . 6 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺𝑦) ∈ (Base‘𝑁))
3635adantrl 712 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
372, 4cmn4 19710 . . . . 5 ((𝑁 ∈ CMnd ∧ ((𝐹𝑥) ∈ (Base‘𝑁) ∧ (𝐹𝑦) ∈ (Base‘𝑁)) ∧ ((𝐺𝑥) ∈ (Base‘𝑁) ∧ (𝐺𝑦) ∈ (Base‘𝑁))) → (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
3828, 30, 32, 34, 36, 37syl122anc 1377 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹𝑥) + (𝐹𝑦)) + ((𝐺𝑥) + (𝐺𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
3925, 38eqtrd 2770 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
4013ffnd 6717 . . . . 5 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹 Fn (Base‘𝑀))
4140adantr 479 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀))
4215ffnd 6717 . . . . 5 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺 Fn (Base‘𝑀))
4342adantr 479 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀))
44 fvexd 6905 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V)
451, 3grpcl 18863 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
46453expb 1118 . . . . 5 ((𝑀 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
476, 46sylan 578 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
48 fnfvof 7689 . . . 4 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥(+g𝑀)𝑦)) = ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))))
4941, 43, 44, 47, 48syl22anc 835 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥(+g𝑀)𝑦)) = ((𝐹‘(𝑥(+g𝑀)𝑦)) + (𝐺‘(𝑥(+g𝑀)𝑦))))
50 simprl 767 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀))
51 fnfvof 7689 . . . . 5 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑥 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
5241, 43, 44, 50, 51syl22anc 835 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
53 simprr 769 . . . . 5 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
54 fnfvof 7689 . . . . 5 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5541, 43, 44, 53, 54syl22anc 835 . . . 4 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5652, 55oveq12d 7429 . . 3 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹f + 𝐺)‘𝑥) + ((𝐹f + 𝐺)‘𝑦)) = (((𝐹𝑥) + (𝐺𝑥)) + ((𝐹𝑦) + (𝐺𝑦))))
5739, 49, 563eqtr4d 2780 . 2 (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥(+g𝑀)𝑦)) = (((𝐹f + 𝐺)‘𝑥) + ((𝐹f + 𝐺)‘𝑦)))
581, 2, 3, 4, 6, 8, 18, 57isghmd 19139 1 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 GrpHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  Vcvv 3472   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7411  f cof 7670  Basecbs 17148  +gcplusg 17201  Grpcgrp 18855   GrpHom cghm 19127  CMndccmn 19689  Abelcabl 19690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-ghm 19128  df-cmn 19691  df-abl 19692
This theorem is referenced by:  lmhmplusg  20799  nmotri  24476  nghmplusg  24477
  Copyright terms: Public domain W3C validator