| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. 2
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 2 | | eqid 2736 |
. 2
⊢
(Base‘𝑁) =
(Base‘𝑁) |
| 3 | | eqid 2736 |
. 2
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 4 | | ghmplusg.p |
. 2
⊢ + =
(+g‘𝑁) |
| 5 | | ghmgrp1 19206 |
. . 3
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑀 ∈ Grp) |
| 6 | 5 | 3ad2ant3 1135 |
. 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑀 ∈ Grp) |
| 7 | | ghmgrp2 19207 |
. . 3
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝑁 ∈ Grp) |
| 8 | 7 | 3ad2ant3 1135 |
. 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝑁 ∈ Grp) |
| 9 | 2, 4 | grpcl 18929 |
. . . . 5
⊢ ((𝑁 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁)) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) |
| 10 | 9 | 3expb 1120 |
. . . 4
⊢ ((𝑁 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) |
| 11 | 8, 10 | sylan 580 |
. . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑁) ∧ 𝑦 ∈ (Base‘𝑁))) → (𝑥 + 𝑦) ∈ (Base‘𝑁)) |
| 12 | 1, 2 | ghmf 19208 |
. . . 4
⊢ (𝐹 ∈ (𝑀 GrpHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
| 13 | 12 | 3ad2ant2 1134 |
. . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
| 14 | 1, 2 | ghmf 19208 |
. . . 4
⊢ (𝐺 ∈ (𝑀 GrpHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) |
| 15 | 14 | 3ad2ant3 1135 |
. . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) |
| 16 | | fvexd 6896 |
. . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (Base‘𝑀) ∈ V) |
| 17 | | inidm 4207 |
. . 3
⊢
((Base‘𝑀)
∩ (Base‘𝑀)) =
(Base‘𝑀) |
| 18 | 11, 13, 15, 16, 16, 17 | off 7694 |
. 2
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘f + 𝐺):(Base‘𝑀)⟶(Base‘𝑁)) |
| 19 | 1, 3, 4 | ghmlin 19209 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
| 20 | 19 | 3expb 1120 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
| 21 | 20 | 3ad2antl2 1187 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
| 22 | 1, 3, 4 | ghmlin 19209 |
. . . . . . 7
⊢ ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) |
| 23 | 22 | 3expb 1120 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑀 GrpHom 𝑁) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) |
| 24 | 23 | 3ad2antl3 1188 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥(+g‘𝑀)𝑦)) = ((𝐺‘𝑥) + (𝐺‘𝑦))) |
| 25 | 21, 24 | oveq12d 7428 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦))) = (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦)))) |
| 26 | | simpl1 1192 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ Abel) |
| 27 | | ablcmn 19773 |
. . . . . 6
⊢ (𝑁 ∈ Abel → 𝑁 ∈ CMnd) |
| 28 | 26, 27 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ CMnd) |
| 29 | 13 | ffvelcdmda 7079 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘𝑥) ∈ (Base‘𝑁)) |
| 30 | 29 | adantrr 717 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘𝑥) ∈ (Base‘𝑁)) |
| 31 | 13 | ffvelcdmda 7079 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘𝑦) ∈ (Base‘𝑁)) |
| 32 | 31 | adantrl 716 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘𝑦) ∈ (Base‘𝑁)) |
| 33 | 15 | ffvelcdmda 7079 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐺‘𝑥) ∈ (Base‘𝑁)) |
| 34 | 33 | adantrr 717 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘𝑥) ∈ (Base‘𝑁)) |
| 35 | 15 | ffvelcdmda 7079 |
. . . . . 6
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘𝑦) ∈ (Base‘𝑁)) |
| 36 | 35 | adantrl 716 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘𝑦) ∈ (Base‘𝑁)) |
| 37 | 2, 4 | cmn4 19787 |
. . . . 5
⊢ ((𝑁 ∈ CMnd ∧ ((𝐹‘𝑥) ∈ (Base‘𝑁) ∧ (𝐹‘𝑦) ∈ (Base‘𝑁)) ∧ ((𝐺‘𝑥) ∈ (Base‘𝑁) ∧ (𝐺‘𝑦) ∈ (Base‘𝑁))) → (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) |
| 38 | 28, 30, 32, 34, 36, 37 | syl122anc 1381 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹‘𝑥) + (𝐹‘𝑦)) + ((𝐺‘𝑥) + (𝐺‘𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) |
| 39 | 25, 38 | eqtrd 2771 |
. . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦))) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) |
| 40 | 13 | ffnd 6712 |
. . . . 5
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐹 Fn (Base‘𝑀)) |
| 41 | 40 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀)) |
| 42 | 15 | ffnd 6712 |
. . . . 5
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → 𝐺 Fn (Base‘𝑀)) |
| 43 | 42 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀)) |
| 44 | | fvexd 6896 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V) |
| 45 | 1, 3 | grpcl 18929 |
. . . . . 6
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
| 46 | 45 | 3expb 1120 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
| 47 | 6, 46 | sylan 580 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
| 48 | | fnfvof 7693 |
. . . 4
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦)))) |
| 49 | 41, 43, 44, 47, 48 | syl22anc 838 |
. . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = ((𝐹‘(𝑥(+g‘𝑀)𝑦)) + (𝐺‘(𝑥(+g‘𝑀)𝑦)))) |
| 50 | | simprl 770 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀)) |
| 51 | | fnfvof 7693 |
. . . . 5
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑥 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| 52 | 41, 43, 44, 50, 51 | syl22anc 838 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| 53 | | simprr 772 |
. . . . 5
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀)) |
| 54 | | fnfvof 7693 |
. . . . 5
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑦) = ((𝐹‘𝑦) + (𝐺‘𝑦))) |
| 55 | 41, 43, 44, 53, 54 | syl22anc 838 |
. . . 4
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑦) = ((𝐹‘𝑦) + (𝐺‘𝑦))) |
| 56 | 52, 55 | oveq12d 7428 |
. . 3
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (((𝐹 ∘f + 𝐺)‘𝑥) + ((𝐹 ∘f + 𝐺)‘𝑦)) = (((𝐹‘𝑥) + (𝐺‘𝑥)) + ((𝐹‘𝑦) + (𝐺‘𝑦)))) |
| 57 | 39, 49, 56 | 3eqtr4d 2781 |
. 2
⊢ (((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥(+g‘𝑀)𝑦)) = (((𝐹 ∘f + 𝐺)‘𝑥) + ((𝐹 ∘f + 𝐺)‘𝑦))) |
| 58 | 1, 2, 3, 4, 6, 8, 18, 57 | isghmd 19213 |
1
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁)) |