Proof of Theorem ablsub4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ablgrp 19804 | . . . . 5
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | 
| 2 | 1 | 3ad2ant1 1133 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Grp) | 
| 3 |  | simp2l 1199 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | 
| 4 |  | simp2r 1200 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | 
| 5 |  | ablsubadd.b | . . . . 5
⊢ 𝐵 = (Base‘𝐺) | 
| 6 |  | ablsubadd.p | . . . . 5
⊢  + =
(+g‘𝐺) | 
| 7 | 5, 6 | grpcl 18960 | . . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | 
| 8 | 2, 3, 4, 7 | syl3anc 1372 | . . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 + 𝑌) ∈ 𝐵) | 
| 9 |  | simp3l 1201 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | 
| 10 |  | simp3r 1202 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) | 
| 11 | 5, 6 | grpcl 18960 | . . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) | 
| 12 | 2, 9, 10, 11 | syl3anc 1372 | . . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 + 𝑊) ∈ 𝐵) | 
| 13 |  | eqid 2736 | . . . 4
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 14 |  | ablsubadd.m | . . . 4
⊢  − =
(-g‘𝐺) | 
| 15 | 5, 6, 13, 14 | grpsubval 19004 | . . 3
⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 + 𝑌) +
((invg‘𝐺)‘(𝑍 + 𝑊)))) | 
| 16 | 8, 12, 15 | syl2anc 584 | . 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 + 𝑌) +
((invg‘𝐺)‘(𝑍 + 𝑊)))) | 
| 17 |  | ablcmn 19806 | . . . . 5
⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | 
| 18 | 17 | 3ad2ant1 1133 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ CMnd) | 
| 19 |  | simp2 1137 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | 
| 20 | 5, 13 | grpinvcl 19006 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) | 
| 21 | 2, 9, 20 | syl2anc 584 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) | 
| 22 | 5, 13 | grpinvcl 19006 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑊 ∈ 𝐵) → ((invg‘𝐺)‘𝑊) ∈ 𝐵) | 
| 23 | 2, 10, 22 | syl2anc 584 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((invg‘𝐺)‘𝑊) ∈ 𝐵) | 
| 24 | 5, 6 | cmn4 19820 | . . . 4
⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑍) ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) +
(((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊))) = ((𝑋 +
((invg‘𝐺)‘𝑍)) + (𝑌 +
((invg‘𝐺)‘𝑊)))) | 
| 25 | 18, 19, 21, 23, 24 | syl112anc 1375 | . . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) +
(((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊))) = ((𝑋 +
((invg‘𝐺)‘𝑍)) + (𝑌 +
((invg‘𝐺)‘𝑊)))) | 
| 26 |  | simp1 1136 | . . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Abel) | 
| 27 | 5, 6, 13 | ablinvadd 19826 | . . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((invg‘𝐺)‘(𝑍 + 𝑊)) = (((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊))) | 
| 28 | 26, 9, 10, 27 | syl3anc 1372 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((invg‘𝐺)‘(𝑍 + 𝑊)) = (((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊))) | 
| 29 | 28 | oveq2d 7448 | . . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) +
((invg‘𝐺)‘(𝑍 + 𝑊))) = ((𝑋 + 𝑌) +
(((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊)))) | 
| 30 | 5, 6, 13, 14 | grpsubval 19004 | . . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋 +
((invg‘𝐺)‘𝑍))) | 
| 31 | 3, 9, 30 | syl2anc 584 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 − 𝑍) = (𝑋 +
((invg‘𝐺)‘𝑍))) | 
| 32 | 5, 6, 13, 14 | grpsubval 19004 | . . . . 5
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 − 𝑊) = (𝑌 +
((invg‘𝐺)‘𝑊))) | 
| 33 | 4, 10, 32 | syl2anc 584 | . . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 − 𝑊) = (𝑌 +
((invg‘𝐺)‘𝑊))) | 
| 34 | 31, 33 | oveq12d 7450 | . . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 − 𝑍) + (𝑌 − 𝑊)) = ((𝑋 +
((invg‘𝐺)‘𝑍)) + (𝑌 +
((invg‘𝐺)‘𝑊)))) | 
| 35 | 25, 29, 34 | 3eqtr4d 2786 | . 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) +
((invg‘𝐺)‘(𝑍 + 𝑊))) = ((𝑋 − 𝑍) + (𝑌 − 𝑊))) | 
| 36 | 16, 35 | eqtrd 2776 | 1
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 − 𝑍) + (𝑌 − 𝑊))) |