Proof of Theorem ablsub4
Step | Hyp | Ref
| Expression |
1 | | ablgrp 19391 |
. . . . 5
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
2 | 1 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Grp) |
3 | | simp2l 1198 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
4 | | simp2r 1199 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
5 | | ablsubadd.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
6 | | ablsubadd.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
7 | 5, 6 | grpcl 18585 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
8 | 2, 3, 4, 7 | syl3anc 1370 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 + 𝑌) ∈ 𝐵) |
9 | | simp3l 1200 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
10 | | simp3r 1201 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) |
11 | 5, 6 | grpcl 18585 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
12 | 2, 9, 10, 11 | syl3anc 1370 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 + 𝑊) ∈ 𝐵) |
13 | | eqid 2738 |
. . . 4
⊢
(invg‘𝐺) = (invg‘𝐺) |
14 | | ablsubadd.m |
. . . 4
⊢ − =
(-g‘𝐺) |
15 | 5, 6, 13, 14 | grpsubval 18625 |
. . 3
⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 + 𝑌) +
((invg‘𝐺)‘(𝑍 + 𝑊)))) |
16 | 8, 12, 15 | syl2anc 584 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 + 𝑌) +
((invg‘𝐺)‘(𝑍 + 𝑊)))) |
17 | | ablcmn 19393 |
. . . . 5
⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
18 | 17 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ CMnd) |
19 | | simp2 1136 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
20 | 5, 13 | grpinvcl 18627 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
21 | 2, 9, 20 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
22 | 5, 13 | grpinvcl 18627 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑊 ∈ 𝐵) → ((invg‘𝐺)‘𝑊) ∈ 𝐵) |
23 | 2, 10, 22 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((invg‘𝐺)‘𝑊) ∈ 𝐵) |
24 | 5, 6 | cmn4 19406 |
. . . 4
⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((invg‘𝐺)‘𝑍) ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) +
(((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊))) = ((𝑋 +
((invg‘𝐺)‘𝑍)) + (𝑌 +
((invg‘𝐺)‘𝑊)))) |
25 | 18, 19, 21, 23, 24 | syl112anc 1373 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) +
(((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊))) = ((𝑋 +
((invg‘𝐺)‘𝑍)) + (𝑌 +
((invg‘𝐺)‘𝑊)))) |
26 | | simp1 1135 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Abel) |
27 | 5, 6, 13 | ablinvadd 19411 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((invg‘𝐺)‘(𝑍 + 𝑊)) = (((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊))) |
28 | 26, 9, 10, 27 | syl3anc 1370 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((invg‘𝐺)‘(𝑍 + 𝑊)) = (((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊))) |
29 | 28 | oveq2d 7291 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) +
((invg‘𝐺)‘(𝑍 + 𝑊))) = ((𝑋 + 𝑌) +
(((invg‘𝐺)‘𝑍) +
((invg‘𝐺)‘𝑊)))) |
30 | 5, 6, 13, 14 | grpsubval 18625 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋 +
((invg‘𝐺)‘𝑍))) |
31 | 3, 9, 30 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 − 𝑍) = (𝑋 +
((invg‘𝐺)‘𝑍))) |
32 | 5, 6, 13, 14 | grpsubval 18625 |
. . . . 5
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 − 𝑊) = (𝑌 +
((invg‘𝐺)‘𝑊))) |
33 | 4, 10, 32 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 − 𝑊) = (𝑌 +
((invg‘𝐺)‘𝑊))) |
34 | 31, 33 | oveq12d 7293 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 − 𝑍) + (𝑌 − 𝑊)) = ((𝑋 +
((invg‘𝐺)‘𝑍)) + (𝑌 +
((invg‘𝐺)‘𝑊)))) |
35 | 25, 29, 34 | 3eqtr4d 2788 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) +
((invg‘𝐺)‘(𝑍 + 𝑊))) = ((𝑋 − 𝑍) + (𝑌 − 𝑊))) |
36 | 16, 35 | eqtrd 2778 |
1
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 − 𝑍) + (𝑌 − 𝑊))) |