MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub4 Structured version   Visualization version   GIF version

Theorem ablsub4 19719
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablsub4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))

Proof of Theorem ablsub4
StepHypRef Expression
1 ablgrp 19694 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
213ad2ant1 1131 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Grp)
3 simp2l 1197 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
4 simp2r 1198 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
5 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . . 5 + = (+g𝐺)
75, 6grpcl 18863 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1369 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
9 simp3l 1199 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
10 simp3r 1200 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6grpcl 18863 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
122, 9, 10, 11syl3anc 1369 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑊) ∈ 𝐵)
13 eqid 2730 . . . 4 (invg𝐺) = (invg𝐺)
14 ablsubadd.m . . . 4 = (-g𝐺)
155, 6, 13, 14grpsubval 18906 . . 3 (((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
168, 12, 15syl2anc 582 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
17 ablcmn 19696 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
18173ad2ant1 1131 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ CMnd)
19 simp2 1135 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋𝐵𝑌𝐵))
205, 13grpinvcl 18908 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
212, 9, 20syl2anc 582 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
225, 13grpinvcl 18908 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑊𝐵) → ((invg𝐺)‘𝑊) ∈ 𝐵)
232, 10, 22syl2anc 582 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑊) ∈ 𝐵)
245, 6cmn4 19710 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (((invg𝐺)‘𝑍) ∈ 𝐵 ∧ ((invg𝐺)‘𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
2518, 19, 21, 23, 24syl112anc 1372 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
26 simp1 1134 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Abel)
275, 6, 13ablinvadd 19716 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑍𝐵𝑊𝐵) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2826, 9, 10, 27syl3anc 1369 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2928oveq2d 7427 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))))
305, 6, 13, 14grpsubval 18906 . . . . 5 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
313, 9, 30syl2anc 582 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
325, 6, 13, 14grpsubval 18906 . . . . 5 ((𝑌𝐵𝑊𝐵) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
334, 10, 32syl2anc 582 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
3431, 33oveq12d 7429 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (𝑌 𝑊)) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
3525, 29, 343eqtr4d 2780 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 𝑍) + (𝑌 𝑊)))
3616, 35eqtrd 2770 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  cfv 6542  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  Grpcgrp 18855  invgcminusg 18856  -gcsg 18857  CMndccmn 19689  Abelcabl 19690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-sbg 18860  df-cmn 19691  df-abl 19692
This theorem is referenced by:  abladdsub4  19720  ablpnpcan  19728  mdetuni0  22343  minveclem2  25174  q1pdir  32948  baerlem3lem1  40881
  Copyright terms: Public domain W3C validator