MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub4 Structured version   Visualization version   GIF version

Theorem ablsub4 19669
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablsub4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))

Proof of Theorem ablsub4
StepHypRef Expression
1 ablgrp 19645 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
213ad2ant1 1134 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Grp)
3 simp2l 1200 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
4 simp2r 1201 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
5 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . . 5 + = (+g𝐺)
75, 6grpcl 18822 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1372 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
9 simp3l 1202 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
10 simp3r 1203 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6grpcl 18822 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
122, 9, 10, 11syl3anc 1372 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑊) ∈ 𝐵)
13 eqid 2733 . . . 4 (invg𝐺) = (invg𝐺)
14 ablsubadd.m . . . 4 = (-g𝐺)
155, 6, 13, 14grpsubval 18865 . . 3 (((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
168, 12, 15syl2anc 585 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
17 ablcmn 19647 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
18173ad2ant1 1134 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ CMnd)
19 simp2 1138 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋𝐵𝑌𝐵))
205, 13grpinvcl 18867 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
212, 9, 20syl2anc 585 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
225, 13grpinvcl 18867 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑊𝐵) → ((invg𝐺)‘𝑊) ∈ 𝐵)
232, 10, 22syl2anc 585 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑊) ∈ 𝐵)
245, 6cmn4 19661 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (((invg𝐺)‘𝑍) ∈ 𝐵 ∧ ((invg𝐺)‘𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
2518, 19, 21, 23, 24syl112anc 1375 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
26 simp1 1137 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Abel)
275, 6, 13ablinvadd 19666 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑍𝐵𝑊𝐵) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2826, 9, 10, 27syl3anc 1372 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2928oveq2d 7419 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))))
305, 6, 13, 14grpsubval 18865 . . . . 5 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
313, 9, 30syl2anc 585 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
325, 6, 13, 14grpsubval 18865 . . . . 5 ((𝑌𝐵𝑊𝐵) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
334, 10, 32syl2anc 585 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
3431, 33oveq12d 7421 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (𝑌 𝑊)) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
3525, 29, 343eqtr4d 2783 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 𝑍) + (𝑌 𝑊)))
3616, 35eqtrd 2773 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cfv 6539  (class class class)co 7403  Basecbs 17139  +gcplusg 17192  Grpcgrp 18814  invgcminusg 18815  -gcsg 18816  CMndccmn 19640  Abelcabl 19641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7969  df-2nd 7970  df-0g 17382  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-grp 18817  df-minusg 18818  df-sbg 18819  df-cmn 19642  df-abl 19643
This theorem is referenced by:  abladdsub4  19670  ablpnpcan  19678  mdetuni0  22104  minveclem2  24924  baerlem3lem1  40515
  Copyright terms: Public domain W3C validator