MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub4 Structured version   Visualization version   GIF version

Theorem ablsub4 18869
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablsub4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))

Proof of Theorem ablsub4
StepHypRef Expression
1 ablgrp 18847 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
213ad2ant1 1127 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Grp)
3 simp2l 1193 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
4 simp2r 1194 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
5 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . . 5 + = (+g𝐺)
75, 6grpcl 18056 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1365 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
9 simp3l 1195 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
10 simp3r 1196 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6grpcl 18056 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
122, 9, 10, 11syl3anc 1365 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑊) ∈ 𝐵)
13 eqid 2826 . . . 4 (invg𝐺) = (invg𝐺)
14 ablsubadd.m . . . 4 = (-g𝐺)
155, 6, 13, 14grpsubval 18094 . . 3 (((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
168, 12, 15syl2anc 584 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
17 ablcmn 18849 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
18173ad2ant1 1127 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ CMnd)
19 simp2 1131 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋𝐵𝑌𝐵))
205, 13grpinvcl 18096 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
212, 9, 20syl2anc 584 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
225, 13grpinvcl 18096 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑊𝐵) → ((invg𝐺)‘𝑊) ∈ 𝐵)
232, 10, 22syl2anc 584 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑊) ∈ 𝐵)
245, 6cmn4 18862 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (((invg𝐺)‘𝑍) ∈ 𝐵 ∧ ((invg𝐺)‘𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
2518, 19, 21, 23, 24syl112anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
26 simp1 1130 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Abel)
275, 6, 13ablinvadd 18866 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑍𝐵𝑊𝐵) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2826, 9, 10, 27syl3anc 1365 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2928oveq2d 7166 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))))
305, 6, 13, 14grpsubval 18094 . . . . 5 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
313, 9, 30syl2anc 584 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
325, 6, 13, 14grpsubval 18094 . . . . 5 ((𝑌𝐵𝑊𝐵) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
334, 10, 32syl2anc 584 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
3431, 33oveq12d 7168 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (𝑌 𝑊)) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
3525, 29, 343eqtr4d 2871 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 𝑍) + (𝑌 𝑊)))
3616, 35eqtrd 2861 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  cfv 6354  (class class class)co 7150  Basecbs 16478  +gcplusg 16560  Grpcgrp 18048  invgcminusg 18049  -gcsg 18050  CMndccmn 18842  Abelcabl 18843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18051  df-minusg 18052  df-sbg 18053  df-cmn 18844  df-abl 18845
This theorem is referenced by:  abladdsub4  18870  ablpnpcan  18876  mdetuni0  21165  minveclem2  23963  baerlem3lem1  38729
  Copyright terms: Public domain W3C validator