| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcntzd | Structured version Visualization version GIF version | ||
| Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcntzd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| ablcntzd.a | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablcntzd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| ablcntzd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| ablcntzd | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcntzd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | subgss 19066 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
| 5 | ablcntzd.a | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 6 | ablcmn 19724 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 8 | ablcntzd.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 9 | 2 | subgss 19066 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
| 11 | ablcntzd.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 12 | 2, 11 | cntzcmn 19777 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍‘𝑈) = (Base‘𝐺)) |
| 13 | 7, 10, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍‘𝑈) = (Base‘𝐺)) |
| 14 | 4, 13 | sseqtrrd 3987 | 1 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 Basecbs 17186 SubGrpcsubg 19059 Cntzccntz 19254 CMndccmn 19717 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-subg 19062 df-cntz 19256 df-cmn 19719 df-abl 19720 |
| This theorem is referenced by: lsmsubg2 19796 ablfacrp2 20006 ablfac1b 20009 pgpfaclem1 20020 pgpfaclem2 20021 pj1lmhm 21014 pj1lmhm2 21015 lvecindp 21055 lvecindp2 21056 pjdm2 21627 pjf2 21630 pjfo 21631 lshpsmreu 39109 lshpkrlem5 39114 |
| Copyright terms: Public domain | W3C validator |