![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcntzd | Structured version Visualization version GIF version |
Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
ablcntzd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
ablcntzd.a | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablcntzd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
ablcntzd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
Ref | Expression |
---|---|
ablcntzd | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcntzd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
2 | eqid 2740 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | subgss 19167 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
5 | ablcntzd.a | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
6 | ablcmn 19829 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
8 | ablcntzd.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
9 | 2 | subgss 19167 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
11 | ablcntzd.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
12 | 2, 11 | cntzcmn 19882 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍‘𝑈) = (Base‘𝐺)) |
13 | 7, 10, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑍‘𝑈) = (Base‘𝐺)) |
14 | 4, 13 | sseqtrrd 4050 | 1 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 Basecbs 17258 SubGrpcsubg 19160 Cntzccntz 19355 CMndccmn 19822 Abelcabl 19823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 |
This theorem is referenced by: lsmsubg2 19901 ablfacrp2 20111 ablfac1b 20114 pgpfaclem1 20125 pgpfaclem2 20126 pj1lmhm 21122 pj1lmhm2 21123 lvecindp 21163 lvecindp2 21164 pjdm2 21754 pjf2 21757 pjfo 21758 lshpsmreu 39065 lshpkrlem5 39070 |
Copyright terms: Public domain | W3C validator |