| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcntzd | Structured version Visualization version GIF version | ||
| Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcntzd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| ablcntzd.a | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablcntzd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| ablcntzd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| ablcntzd | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcntzd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | subgss 19059 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
| 5 | ablcntzd.a | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 6 | ablcmn 19717 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 8 | ablcntzd.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 9 | 2 | subgss 19059 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
| 11 | ablcntzd.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 12 | 2, 11 | cntzcmn 19770 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍‘𝑈) = (Base‘𝐺)) |
| 13 | 7, 10, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍‘𝑈) = (Base‘𝐺)) |
| 14 | 4, 13 | sseqtrrd 3984 | 1 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 Basecbs 17179 SubGrpcsubg 19052 Cntzccntz 19247 CMndccmn 19710 Abelcabl 19711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-subg 19055 df-cntz 19249 df-cmn 19712 df-abl 19713 |
| This theorem is referenced by: lsmsubg2 19789 ablfacrp2 19999 ablfac1b 20002 pgpfaclem1 20013 pgpfaclem2 20014 pj1lmhm 21007 pj1lmhm2 21008 lvecindp 21048 lvecindp2 21049 pjdm2 21620 pjf2 21623 pjfo 21624 lshpsmreu 39102 lshpkrlem5 39107 |
| Copyright terms: Public domain | W3C validator |