MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcntzd Structured version   Visualization version   GIF version

Theorem ablcntzd 19890
Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablcntzd.z 𝑍 = (Cntz‘𝐺)
ablcntzd.a (𝜑𝐺 ∈ Abel)
ablcntzd.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
ablcntzd.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
ablcntzd (𝜑𝑇 ⊆ (𝑍𝑈))

Proof of Theorem ablcntzd
StepHypRef Expression
1 ablcntzd.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 eqid 2735 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32subgss 19158 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
41, 3syl 17 . 2 (𝜑𝑇 ⊆ (Base‘𝐺))
5 ablcntzd.a . . . 4 (𝜑𝐺 ∈ Abel)
6 ablcmn 19820 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
8 ablcntzd.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
92subgss 19158 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
108, 9syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐺))
11 ablcntzd.z . . . 4 𝑍 = (Cntz‘𝐺)
122, 11cntzcmn 19873 . . 3 ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍𝑈) = (Base‘𝐺))
137, 10, 12syl2anc 584 . 2 (𝜑 → (𝑍𝑈) = (Base‘𝐺))
144, 13sseqtrrd 4037 1 (𝜑𝑇 ⊆ (𝑍𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  cfv 6563  Basecbs 17245  SubGrpcsubg 19151  Cntzccntz 19346  CMndccmn 19813  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816
This theorem is referenced by:  lsmsubg2  19892  ablfacrp2  20102  ablfac1b  20105  pgpfaclem1  20116  pgpfaclem2  20117  pj1lmhm  21117  pj1lmhm2  21118  lvecindp  21158  lvecindp2  21159  pjdm2  21749  pjf2  21752  pjfo  21753  lshpsmreu  39091  lshpkrlem5  39096
  Copyright terms: Public domain W3C validator