Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablcntzd | Structured version Visualization version GIF version |
Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
ablcntzd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
ablcntzd.a | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablcntzd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
ablcntzd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
Ref | Expression |
---|---|
ablcntzd | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcntzd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | subgss 18671 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
5 | ablcntzd.a | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
6 | ablcmn 19308 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
8 | ablcntzd.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
9 | 2 | subgss 18671 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
11 | ablcntzd.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
12 | 2, 11 | cntzcmn 19356 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍‘𝑈) = (Base‘𝐺)) |
13 | 7, 10, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑍‘𝑈) = (Base‘𝐺)) |
14 | 4, 13 | sseqtrrd 3958 | 1 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 Basecbs 16840 SubGrpcsubg 18664 Cntzccntz 18836 CMndccmn 19301 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-subg 18667 df-cntz 18838 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: lsmsubg2 19375 ablfacrp2 19585 ablfac1b 19588 pgpfaclem1 19599 pgpfaclem2 19600 pj1lmhm 20277 pj1lmhm2 20278 lvecindp 20315 lvecindp2 20316 pjdm2 20828 pjf2 20831 pjfo 20832 lshpsmreu 37050 lshpkrlem5 37055 |
Copyright terms: Public domain | W3C validator |