MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcntzd Structured version   Visualization version   GIF version

Theorem ablcntzd 19769
Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablcntzd.z 𝑍 = (Cntz‘𝐺)
ablcntzd.a (𝜑𝐺 ∈ Abel)
ablcntzd.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
ablcntzd.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
ablcntzd (𝜑𝑇 ⊆ (𝑍𝑈))

Proof of Theorem ablcntzd
StepHypRef Expression
1 ablcntzd.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 eqid 2724 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32subgss 19046 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
41, 3syl 17 . 2 (𝜑𝑇 ⊆ (Base‘𝐺))
5 ablcntzd.a . . . 4 (𝜑𝐺 ∈ Abel)
6 ablcmn 19699 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
8 ablcntzd.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
92subgss 19046 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
108, 9syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐺))
11 ablcntzd.z . . . 4 𝑍 = (Cntz‘𝐺)
122, 11cntzcmn 19752 . . 3 ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍𝑈) = (Base‘𝐺))
137, 10, 12syl2anc 583 . 2 (𝜑 → (𝑍𝑈) = (Base‘𝐺))
144, 13sseqtrrd 4016 1 (𝜑𝑇 ⊆ (𝑍𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wss 3941  cfv 6534  Basecbs 17145  SubGrpcsubg 19039  Cntzccntz 19223  CMndccmn 19692  Abelcabl 19693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-subg 19042  df-cntz 19225  df-cmn 19694  df-abl 19695
This theorem is referenced by:  lsmsubg2  19771  ablfacrp2  19981  ablfac1b  19984  pgpfaclem1  19995  pgpfaclem2  19996  pj1lmhm  20940  pj1lmhm2  20941  lvecindp  20981  lvecindp2  20982  pjdm2  21576  pjf2  21579  pjfo  21580  lshpsmreu  38473  lshpkrlem5  38478
  Copyright terms: Public domain W3C validator