MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcntzd Structured version   Visualization version   GIF version

Theorem ablcntzd 19899
Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablcntzd.z 𝑍 = (Cntz‘𝐺)
ablcntzd.a (𝜑𝐺 ∈ Abel)
ablcntzd.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
ablcntzd.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
ablcntzd (𝜑𝑇 ⊆ (𝑍𝑈))

Proof of Theorem ablcntzd
StepHypRef Expression
1 ablcntzd.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 eqid 2740 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32subgss 19167 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
41, 3syl 17 . 2 (𝜑𝑇 ⊆ (Base‘𝐺))
5 ablcntzd.a . . . 4 (𝜑𝐺 ∈ Abel)
6 ablcmn 19829 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
8 ablcntzd.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
92subgss 19167 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
108, 9syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐺))
11 ablcntzd.z . . . 4 𝑍 = (Cntz‘𝐺)
122, 11cntzcmn 19882 . . 3 ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍𝑈) = (Base‘𝐺))
137, 10, 12syl2anc 583 . 2 (𝜑 → (𝑍𝑈) = (Base‘𝐺))
144, 13sseqtrrd 4050 1 (𝜑𝑇 ⊆ (𝑍𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wss 3976  cfv 6573  Basecbs 17258  SubGrpcsubg 19160  Cntzccntz 19355  CMndccmn 19822  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825
This theorem is referenced by:  lsmsubg2  19901  ablfacrp2  20111  ablfac1b  20114  pgpfaclem1  20125  pgpfaclem2  20126  pj1lmhm  21122  pj1lmhm2  21123  lvecindp  21163  lvecindp2  21164  pjdm2  21754  pjf2  21757  pjfo  21758  lshpsmreu  39065  lshpkrlem5  39070
  Copyright terms: Public domain W3C validator