| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcntzd | Structured version Visualization version GIF version | ||
| Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcntzd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| ablcntzd.a | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablcntzd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| ablcntzd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| ablcntzd | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcntzd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | subgss 19006 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
| 5 | ablcntzd.a | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 6 | ablcmn 19666 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 8 | ablcntzd.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 9 | 2 | subgss 19006 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
| 11 | ablcntzd.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 12 | 2, 11 | cntzcmn 19719 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍‘𝑈) = (Base‘𝐺)) |
| 13 | 7, 10, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍‘𝑈) = (Base‘𝐺)) |
| 14 | 4, 13 | sseqtrrd 3973 | 1 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 Basecbs 17120 SubGrpcsubg 18999 Cntzccntz 19194 CMndccmn 19659 Abelcabl 19660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 |
| This theorem is referenced by: lsmsubg2 19738 ablfacrp2 19948 ablfac1b 19951 pgpfaclem1 19962 pgpfaclem2 19963 pj1lmhm 21004 pj1lmhm2 21005 lvecindp 21045 lvecindp2 21046 pjdm2 21618 pjf2 21621 pjfo 21622 lshpsmreu 39108 lshpkrlem5 39113 |
| Copyright terms: Public domain | W3C validator |