MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcntzd Structured version   Visualization version   GIF version

Theorem ablcntzd 19794
Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablcntzd.z 𝑍 = (Cntz‘𝐺)
ablcntzd.a (𝜑𝐺 ∈ Abel)
ablcntzd.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
ablcntzd.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
ablcntzd (𝜑𝑇 ⊆ (𝑍𝑈))

Proof of Theorem ablcntzd
StepHypRef Expression
1 ablcntzd.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 eqid 2730 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32subgss 19066 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
41, 3syl 17 . 2 (𝜑𝑇 ⊆ (Base‘𝐺))
5 ablcntzd.a . . . 4 (𝜑𝐺 ∈ Abel)
6 ablcmn 19724 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
8 ablcntzd.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
92subgss 19066 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
108, 9syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐺))
11 ablcntzd.z . . . 4 𝑍 = (Cntz‘𝐺)
122, 11cntzcmn 19777 . . 3 ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍𝑈) = (Base‘𝐺))
137, 10, 12syl2anc 584 . 2 (𝜑 → (𝑍𝑈) = (Base‘𝐺))
144, 13sseqtrrd 3987 1 (𝜑𝑇 ⊆ (𝑍𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  cfv 6514  Basecbs 17186  SubGrpcsubg 19059  Cntzccntz 19254  CMndccmn 19717  Abelcabl 19718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720
This theorem is referenced by:  lsmsubg2  19796  ablfacrp2  20006  ablfac1b  20009  pgpfaclem1  20020  pgpfaclem2  20021  pj1lmhm  21014  pj1lmhm2  21015  lvecindp  21055  lvecindp2  21056  pjdm2  21627  pjf2  21630  pjfo  21631  lshpsmreu  39109  lshpkrlem5  39114
  Copyright terms: Public domain W3C validator