MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcntzd Structured version   Visualization version   GIF version

Theorem ablcntzd 19373
Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablcntzd.z 𝑍 = (Cntz‘𝐺)
ablcntzd.a (𝜑𝐺 ∈ Abel)
ablcntzd.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
ablcntzd.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
ablcntzd (𝜑𝑇 ⊆ (𝑍𝑈))

Proof of Theorem ablcntzd
StepHypRef Expression
1 ablcntzd.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32subgss 18671 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
41, 3syl 17 . 2 (𝜑𝑇 ⊆ (Base‘𝐺))
5 ablcntzd.a . . . 4 (𝜑𝐺 ∈ Abel)
6 ablcmn 19308 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
8 ablcntzd.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
92subgss 18671 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
108, 9syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐺))
11 ablcntzd.z . . . 4 𝑍 = (Cntz‘𝐺)
122, 11cntzcmn 19356 . . 3 ((𝐺 ∈ CMnd ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍𝑈) = (Base‘𝐺))
137, 10, 12syl2anc 583 . 2 (𝜑 → (𝑍𝑈) = (Base‘𝐺))
144, 13sseqtrrd 3958 1 (𝜑𝑇 ⊆ (𝑍𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  cfv 6418  Basecbs 16840  SubGrpcsubg 18664  Cntzccntz 18836  CMndccmn 19301  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304
This theorem is referenced by:  lsmsubg2  19375  ablfacrp2  19585  ablfac1b  19588  pgpfaclem1  19599  pgpfaclem2  19600  pj1lmhm  20277  pj1lmhm2  20278  lvecindp  20315  lvecindp2  20316  pjdm2  20828  pjf2  20831  pjfo  20832  lshpsmreu  37050  lshpkrlem5  37055
  Copyright terms: Public domain W3C validator