MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsub Structured version   Visualization version   GIF version

Theorem gsumsub 19549
Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumsub.b 𝐵 = (Base‘𝐺)
gsumsub.z 0 = (0g𝐺)
gsumsub.m = (-g𝐺)
gsumsub.g (𝜑𝐺 ∈ Abel)
gsumsub.a (𝜑𝐴𝑉)
gsumsub.f (𝜑𝐹:𝐴𝐵)
gsumsub.h (𝜑𝐻:𝐴𝐵)
gsumsub.fn (𝜑𝐹 finSupp 0 )
gsumsub.hn (𝜑𝐻 finSupp 0 )
Assertion
Ref Expression
gsumsub (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))

Proof of Theorem gsumsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsub.b . . . 4 𝐵 = (Base‘𝐺)
2 gsumsub.z . . . 4 0 = (0g𝐺)
3 eqid 2738 . . . 4 (+g𝐺) = (+g𝐺)
4 gsumsub.g . . . . 5 (𝜑𝐺 ∈ Abel)
5 ablcmn 19393 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
64, 5syl 17 . . . 4 (𝜑𝐺 ∈ CMnd)
7 gsumsub.a . . . 4 (𝜑𝐴𝑉)
8 gsumsub.f . . . 4 (𝜑𝐹:𝐴𝐵)
9 eqid 2738 . . . . . . 7 (invg𝐺) = (invg𝐺)
10 ablgrp 19391 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
114, 10syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
121, 9, 11grpinvf1o 18645 . . . . . 6 (𝜑 → (invg𝐺):𝐵1-1-onto𝐵)
13 f1of 6716 . . . . . 6 ((invg𝐺):𝐵1-1-onto𝐵 → (invg𝐺):𝐵𝐵)
1412, 13syl 17 . . . . 5 (𝜑 → (invg𝐺):𝐵𝐵)
15 gsumsub.h . . . . 5 (𝜑𝐻:𝐴𝐵)
16 fco 6624 . . . . 5 (((invg𝐺):𝐵𝐵𝐻:𝐴𝐵) → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
1714, 15, 16syl2anc 584 . . . 4 (𝜑 → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
18 gsumsub.fn . . . 4 (𝜑𝐹 finSupp 0 )
192fvexi 6788 . . . . . 6 0 ∈ V
2019a1i 11 . . . . 5 (𝜑0 ∈ V)
211fvexi 6788 . . . . . 6 𝐵 ∈ V
2221a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
23 gsumsub.hn . . . . 5 (𝜑𝐻 finSupp 0 )
242, 9grpinvid 18636 . . . . . 6 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2511, 24syl 17 . . . . 5 (𝜑 → ((invg𝐺)‘ 0 ) = 0 )
2620, 15, 14, 7, 22, 23, 25fsuppco2 9162 . . . 4 (𝜑 → ((invg𝐺) ∘ 𝐻) finSupp 0 )
271, 2, 3, 6, 7, 8, 17, 18, 26gsumadd 19524 . . 3 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
281, 2, 9, 4, 7, 15, 23gsuminv 19547 . . . 4 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
2928oveq2d 7291 . . 3 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
3027, 29eqtrd 2778 . 2 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
318ffvelrnda 6961 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3215ffvelrnda 6961 . . . . . 6 ((𝜑𝑘𝐴) → (𝐻𝑘) ∈ 𝐵)
33 gsumsub.m . . . . . . 7 = (-g𝐺)
341, 3, 9, 33grpsubval 18625 . . . . . 6 (((𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3531, 32, 34syl2anc 584 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3635mpteq2dva 5174 . . . 4 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
378feqmptd 6837 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3815feqmptd 6837 . . . . 5 (𝜑𝐻 = (𝑘𝐴 ↦ (𝐻𝑘)))
397, 31, 32, 37, 38offval2 7553 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))))
40 fvexd 6789 . . . . 5 ((𝜑𝑘𝐴) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
4114feqmptd 6837 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥𝐵 ↦ ((invg𝐺)‘𝑥)))
42 fveq2 6774 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
4332, 38, 41, 42fmptco 7001 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐴 ↦ ((invg𝐺)‘(𝐻𝑘))))
447, 31, 40, 37, 43offval2 7553 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
4536, 39, 443eqtr4d 2788 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
4645oveq2d 7291 . 2 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
471, 2, 6, 7, 8, 18gsumcl 19516 . . 3 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
481, 2, 6, 7, 15, 23gsumcl 19516 . . 3 (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵)
491, 3, 9, 33grpsubval 18625 . . 3 (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
5047, 48, 49syl2anc 584 . 2 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
5130, 46, 503eqtr4d 2788 1 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  cmpt 5157  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  f cof 7531   finSupp cfsupp 9128  Basecbs 16912  +gcplusg 16962  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579  CMndccmn 19386  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389
This theorem is referenced by:  gsummptfssub  19550  tsmsxplem2  23305
  Copyright terms: Public domain W3C validator