MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsub Structured version   Visualization version   GIF version

Theorem gsumsub 19927
Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumsub.b 𝐵 = (Base‘𝐺)
gsumsub.z 0 = (0g𝐺)
gsumsub.m = (-g𝐺)
gsumsub.g (𝜑𝐺 ∈ Abel)
gsumsub.a (𝜑𝐴𝑉)
gsumsub.f (𝜑𝐹:𝐴𝐵)
gsumsub.h (𝜑𝐻:𝐴𝐵)
gsumsub.fn (𝜑𝐹 finSupp 0 )
gsumsub.hn (𝜑𝐻 finSupp 0 )
Assertion
Ref Expression
gsumsub (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))

Proof of Theorem gsumsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsub.b . . . 4 𝐵 = (Base‘𝐺)
2 gsumsub.z . . . 4 0 = (0g𝐺)
3 eqid 2735 . . . 4 (+g𝐺) = (+g𝐺)
4 gsumsub.g . . . . 5 (𝜑𝐺 ∈ Abel)
5 ablcmn 19766 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
64, 5syl 17 . . . 4 (𝜑𝐺 ∈ CMnd)
7 gsumsub.a . . . 4 (𝜑𝐴𝑉)
8 gsumsub.f . . . 4 (𝜑𝐹:𝐴𝐵)
9 eqid 2735 . . . . . . 7 (invg𝐺) = (invg𝐺)
10 ablgrp 19764 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
114, 10syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
121, 9, 11grpinvf1o 18990 . . . . . 6 (𝜑 → (invg𝐺):𝐵1-1-onto𝐵)
13 f1of 6817 . . . . . 6 ((invg𝐺):𝐵1-1-onto𝐵 → (invg𝐺):𝐵𝐵)
1412, 13syl 17 . . . . 5 (𝜑 → (invg𝐺):𝐵𝐵)
15 gsumsub.h . . . . 5 (𝜑𝐻:𝐴𝐵)
16 fco 6729 . . . . 5 (((invg𝐺):𝐵𝐵𝐻:𝐴𝐵) → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
1714, 15, 16syl2anc 584 . . . 4 (𝜑 → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
18 gsumsub.fn . . . 4 (𝜑𝐹 finSupp 0 )
192fvexi 6889 . . . . . 6 0 ∈ V
2019a1i 11 . . . . 5 (𝜑0 ∈ V)
211fvexi 6889 . . . . . 6 𝐵 ∈ V
2221a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
23 gsumsub.hn . . . . 5 (𝜑𝐻 finSupp 0 )
242, 9grpinvid 18980 . . . . . 6 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2511, 24syl 17 . . . . 5 (𝜑 → ((invg𝐺)‘ 0 ) = 0 )
2620, 15, 14, 7, 22, 23, 25fsuppco2 9413 . . . 4 (𝜑 → ((invg𝐺) ∘ 𝐻) finSupp 0 )
271, 2, 3, 6, 7, 8, 17, 18, 26gsumadd 19902 . . 3 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
281, 2, 9, 4, 7, 15, 23gsuminv 19925 . . . 4 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
2928oveq2d 7419 . . 3 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
3027, 29eqtrd 2770 . 2 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
318ffvelcdmda 7073 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3215ffvelcdmda 7073 . . . . . 6 ((𝜑𝑘𝐴) → (𝐻𝑘) ∈ 𝐵)
33 gsumsub.m . . . . . . 7 = (-g𝐺)
341, 3, 9, 33grpsubval 18966 . . . . . 6 (((𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3531, 32, 34syl2anc 584 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3635mpteq2dva 5214 . . . 4 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
378feqmptd 6946 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3815feqmptd 6946 . . . . 5 (𝜑𝐻 = (𝑘𝐴 ↦ (𝐻𝑘)))
397, 31, 32, 37, 38offval2 7689 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))))
40 fvexd 6890 . . . . 5 ((𝜑𝑘𝐴) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
4114feqmptd 6946 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥𝐵 ↦ ((invg𝐺)‘𝑥)))
42 fveq2 6875 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
4332, 38, 41, 42fmptco 7118 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐴 ↦ ((invg𝐺)‘(𝐻𝑘))))
447, 31, 40, 37, 43offval2 7689 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
4536, 39, 443eqtr4d 2780 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
4645oveq2d 7419 . 2 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
471, 2, 6, 7, 8, 18gsumcl 19894 . . 3 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
481, 2, 6, 7, 15, 23gsumcl 19894 . . 3 (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵)
491, 3, 9, 33grpsubval 18966 . . 3 (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
5047, 48, 49syl2anc 584 . 2 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
5130, 46, 503eqtr4d 2780 1 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459   class class class wbr 5119  cmpt 5201  ccom 5658  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  f cof 7667   finSupp cfsupp 9371  Basecbs 17226  +gcplusg 17269  0gc0g 17451   Σg cgsu 17452  Grpcgrp 18914  invgcminusg 18915  -gcsg 18916  CMndccmn 19759  Abelcabl 19760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-0g 17453  df-gsum 17454  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762
This theorem is referenced by:  gsummptfssub  19928  tsmsxplem2  24090
  Copyright terms: Public domain W3C validator