| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumsub | Structured version Visualization version GIF version | ||
| Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumsub.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsub.z | ⊢ 0 = (0g‘𝐺) |
| gsumsub.m | ⊢ − = (-g‘𝐺) |
| gsumsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| gsumsub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumsub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumsub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| gsumsub.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| gsumsub.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumsub | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumsub.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | gsumsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 5 | ablcmn 19766 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 7 | gsumsub.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | gsumsub.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 9 | eqid 2735 | . . . . . . 7 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 10 | ablgrp 19764 | . . . . . . . 8 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 11 | 4, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 12 | 1, 9, 11 | grpinvf1o 18990 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺):𝐵–1-1-onto→𝐵) |
| 13 | f1of 6817 | . . . . . 6 ⊢ ((invg‘𝐺):𝐵–1-1-onto→𝐵 → (invg‘𝐺):𝐵⟶𝐵) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
| 15 | gsumsub.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
| 16 | fco 6729 | . . . . 5 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
| 18 | gsumsub.fn | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 19 | 2 | fvexi 6889 | . . . . . 6 ⊢ 0 ∈ V |
| 20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
| 21 | 1 | fvexi 6889 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 23 | gsumsub.hn | . . . . 5 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
| 24 | 2, 9 | grpinvid 18980 | . . . . . 6 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 25 | 11, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 26 | 20, 15, 14, 7, 22, 23, 25 | fsuppco2 9413 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) finSupp 0 ) |
| 27 | 1, 2, 3, 6, 7, 8, 17, 18, 26 | gsumadd 19902 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻)))) |
| 28 | 1, 2, 9, 4, 7, 15, 23 | gsuminv 19925 | . . . 4 ⊢ (𝜑 → (𝐺 Σg ((invg‘𝐺) ∘ 𝐻)) = ((invg‘𝐺)‘(𝐺 Σg 𝐻))) |
| 29 | 28 | oveq2d 7419 | . . 3 ⊢ (𝜑 → ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
| 30 | 27, 29 | eqtrd 2770 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
| 31 | 8 | ffvelcdmda 7073 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
| 32 | 15 | ffvelcdmda 7073 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
| 33 | gsumsub.m | . . . . . . 7 ⊢ − = (-g‘𝐺) | |
| 34 | 1, 3, 9, 33 | grpsubval 18966 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 35 | 31, 32, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 36 | 35 | mpteq2dva 5214 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 37 | 8 | feqmptd 6946 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 38 | 15 | feqmptd 6946 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
| 39 | 7, 31, 32, 37, 38 | offval2 7689 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
| 40 | fvexd 6890 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
| 41 | 14 | feqmptd 6946 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
| 42 | fveq2 6875 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
| 43 | 32, 38, 41, 42 | fmptco 7118 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 44 | 7, 31, 40, 37, 43 | offval2 7689 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 45 | 36, 39, 44 | 3eqtr4d 2780 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
| 46 | 45 | oveq2d 7419 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
| 47 | 1, 2, 6, 7, 8, 18 | gsumcl 19894 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
| 48 | 1, 2, 6, 7, 15, 23 | gsumcl 19894 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵) |
| 49 | 1, 3, 9, 33 | grpsubval 18966 | . . 3 ⊢ (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
| 50 | 47, 48, 49 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
| 51 | 30, 46, 50 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 ↦ cmpt 5201 ∘ ccom 5658 ⟶wf 6526 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 ∘f cof 7667 finSupp cfsupp 9371 Basecbs 17226 +gcplusg 17269 0gc0g 17451 Σg cgsu 17452 Grpcgrp 18914 invgcminusg 18915 -gcsg 18916 CMndccmn 19759 Abelcabl 19760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-seq 14018 df-hash 14347 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-0g 17453 df-gsum 17454 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 |
| This theorem is referenced by: gsummptfssub 19928 tsmsxplem2 24090 |
| Copyright terms: Public domain | W3C validator |