![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsub | Structured version Visualization version GIF version |
Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
gsumsub.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsub.z | ⊢ 0 = (0g‘𝐺) |
gsumsub.m | ⊢ − = (-g‘𝐺) |
gsumsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
gsumsub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumsub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumsub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
gsumsub.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
gsumsub.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
Ref | Expression |
---|---|
gsumsub | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumsub.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2740 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | gsumsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | ablcmn 19829 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
7 | gsumsub.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | gsumsub.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
9 | eqid 2740 | . . . . . . 7 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | ablgrp 19827 | . . . . . . . 8 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
11 | 4, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ Grp) |
12 | 1, 9, 11 | grpinvf1o 19049 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺):𝐵–1-1-onto→𝐵) |
13 | f1of 6862 | . . . . . 6 ⊢ ((invg‘𝐺):𝐵–1-1-onto→𝐵 → (invg‘𝐺):𝐵⟶𝐵) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
15 | gsumsub.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
16 | fco 6771 | . . . . 5 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
17 | 14, 15, 16 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
18 | gsumsub.fn | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
19 | 2 | fvexi 6934 | . . . . . 6 ⊢ 0 ∈ V |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
21 | 1 | fvexi 6934 | . . . . . 6 ⊢ 𝐵 ∈ V |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
23 | gsumsub.hn | . . . . 5 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
24 | 2, 9 | grpinvid 19039 | . . . . . 6 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
25 | 11, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺)‘ 0 ) = 0 ) |
26 | 20, 15, 14, 7, 22, 23, 25 | fsuppco2 9472 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) finSupp 0 ) |
27 | 1, 2, 3, 6, 7, 8, 17, 18, 26 | gsumadd 19965 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻)))) |
28 | 1, 2, 9, 4, 7, 15, 23 | gsuminv 19988 | . . . 4 ⊢ (𝜑 → (𝐺 Σg ((invg‘𝐺) ∘ 𝐻)) = ((invg‘𝐺)‘(𝐺 Σg 𝐻))) |
29 | 28 | oveq2d 7464 | . . 3 ⊢ (𝜑 → ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
30 | 27, 29 | eqtrd 2780 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
31 | 8 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
32 | 15 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
33 | gsumsub.m | . . . . . . 7 ⊢ − = (-g‘𝐺) | |
34 | 1, 3, 9, 33 | grpsubval 19025 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
35 | 31, 32, 34 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
36 | 35 | mpteq2dva 5266 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
37 | 8 | feqmptd 6990 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
38 | 15 | feqmptd 6990 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
39 | 7, 31, 32, 37, 38 | offval2 7734 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
40 | fvexd 6935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
41 | 14 | feqmptd 6990 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
42 | fveq2 6920 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
43 | 32, 38, 41, 42 | fmptco 7163 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
44 | 7, 31, 40, 37, 43 | offval2 7734 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
45 | 36, 39, 44 | 3eqtr4d 2790 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
46 | 45 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
47 | 1, 2, 6, 7, 8, 18 | gsumcl 19957 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
48 | 1, 2, 6, 7, 15, 23 | gsumcl 19957 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵) |
49 | 1, 3, 9, 33 | grpsubval 19025 | . . 3 ⊢ (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
50 | 47, 48, 49 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
51 | 30, 46, 50 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 finSupp cfsupp 9431 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Σg cgsu 17500 Grpcgrp 18973 invgcminusg 18974 -gcsg 18975 CMndccmn 19822 Abelcabl 19823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 |
This theorem is referenced by: gsummptfssub 19991 tsmsxplem2 24183 |
Copyright terms: Public domain | W3C validator |