Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumsub | Structured version Visualization version GIF version |
Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
gsumsub.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsub.z | ⊢ 0 = (0g‘𝐺) |
gsumsub.m | ⊢ − = (-g‘𝐺) |
gsumsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
gsumsub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumsub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumsub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
gsumsub.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
gsumsub.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
Ref | Expression |
---|---|
gsumsub | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumsub.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2736 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | gsumsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | ablcmn 19465 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
7 | gsumsub.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | gsumsub.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
9 | eqid 2736 | . . . . . . 7 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | ablgrp 19463 | . . . . . . . 8 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
11 | 4, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ Grp) |
12 | 1, 9, 11 | grpinvf1o 18718 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺):𝐵–1-1-onto→𝐵) |
13 | f1of 6753 | . . . . . 6 ⊢ ((invg‘𝐺):𝐵–1-1-onto→𝐵 → (invg‘𝐺):𝐵⟶𝐵) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
15 | gsumsub.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
16 | fco 6661 | . . . . 5 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
18 | gsumsub.fn | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
19 | 2 | fvexi 6825 | . . . . . 6 ⊢ 0 ∈ V |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
21 | 1 | fvexi 6825 | . . . . . 6 ⊢ 𝐵 ∈ V |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
23 | gsumsub.hn | . . . . 5 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
24 | 2, 9 | grpinvid 18709 | . . . . . 6 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
25 | 11, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺)‘ 0 ) = 0 ) |
26 | 20, 15, 14, 7, 22, 23, 25 | fsuppco2 9238 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) finSupp 0 ) |
27 | 1, 2, 3, 6, 7, 8, 17, 18, 26 | gsumadd 19596 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻)))) |
28 | 1, 2, 9, 4, 7, 15, 23 | gsuminv 19619 | . . . 4 ⊢ (𝜑 → (𝐺 Σg ((invg‘𝐺) ∘ 𝐻)) = ((invg‘𝐺)‘(𝐺 Σg 𝐻))) |
29 | 28 | oveq2d 7332 | . . 3 ⊢ (𝜑 → ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
30 | 27, 29 | eqtrd 2776 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
31 | 8 | ffvelcdmda 7000 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
32 | 15 | ffvelcdmda 7000 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
33 | gsumsub.m | . . . . . . 7 ⊢ − = (-g‘𝐺) | |
34 | 1, 3, 9, 33 | grpsubval 18698 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
35 | 31, 32, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
36 | 35 | mpteq2dva 5186 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
37 | 8 | feqmptd 6876 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
38 | 15 | feqmptd 6876 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
39 | 7, 31, 32, 37, 38 | offval2 7594 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
40 | fvexd 6826 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
41 | 14 | feqmptd 6876 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
42 | fveq2 6811 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
43 | 32, 38, 41, 42 | fmptco 7040 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
44 | 7, 31, 40, 37, 43 | offval2 7594 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
45 | 36, 39, 44 | 3eqtr4d 2786 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
46 | 45 | oveq2d 7332 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
47 | 1, 2, 6, 7, 8, 18 | gsumcl 19588 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
48 | 1, 2, 6, 7, 15, 23 | gsumcl 19588 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵) |
49 | 1, 3, 9, 33 | grpsubval 18698 | . . 3 ⊢ (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
50 | 47, 48, 49 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
51 | 30, 46, 50 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 class class class wbr 5086 ↦ cmpt 5169 ∘ ccom 5611 ⟶wf 6461 –1-1-onto→wf1o 6464 ‘cfv 6465 (class class class)co 7316 ∘f cof 7572 finSupp cfsupp 9204 Basecbs 16986 +gcplusg 17036 0gc0g 17224 Σg cgsu 17225 Grpcgrp 18650 invgcminusg 18651 -gcsg 18652 CMndccmn 19458 Abelcabl 19459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-om 7759 df-1st 7877 df-2nd 7878 df-supp 8026 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fsupp 9205 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-seq 13801 df-hash 14124 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-0g 17226 df-gsum 17227 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-mhm 18504 df-submnd 18505 df-grp 18653 df-minusg 18654 df-sbg 18655 df-ghm 18905 df-cntz 18996 df-cmn 19460 df-abl 19461 |
This theorem is referenced by: gsummptfssub 19622 tsmsxplem2 23385 |
Copyright terms: Public domain | W3C validator |