Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumsub | Structured version Visualization version GIF version |
Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
gsumsub.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsub.z | ⊢ 0 = (0g‘𝐺) |
gsumsub.m | ⊢ − = (-g‘𝐺) |
gsumsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
gsumsub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumsub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumsub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
gsumsub.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
gsumsub.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
Ref | Expression |
---|---|
gsumsub | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumsub.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2738 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | gsumsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | ablcmn 19393 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
7 | gsumsub.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | gsumsub.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
9 | eqid 2738 | . . . . . . 7 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | ablgrp 19391 | . . . . . . . 8 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
11 | 4, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ Grp) |
12 | 1, 9, 11 | grpinvf1o 18645 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺):𝐵–1-1-onto→𝐵) |
13 | f1of 6716 | . . . . . 6 ⊢ ((invg‘𝐺):𝐵–1-1-onto→𝐵 → (invg‘𝐺):𝐵⟶𝐵) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
15 | gsumsub.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
16 | fco 6624 | . . . . 5 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
18 | gsumsub.fn | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
19 | 2 | fvexi 6788 | . . . . . 6 ⊢ 0 ∈ V |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
21 | 1 | fvexi 6788 | . . . . . 6 ⊢ 𝐵 ∈ V |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
23 | gsumsub.hn | . . . . 5 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
24 | 2, 9 | grpinvid 18636 | . . . . . 6 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
25 | 11, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺)‘ 0 ) = 0 ) |
26 | 20, 15, 14, 7, 22, 23, 25 | fsuppco2 9162 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) finSupp 0 ) |
27 | 1, 2, 3, 6, 7, 8, 17, 18, 26 | gsumadd 19524 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻)))) |
28 | 1, 2, 9, 4, 7, 15, 23 | gsuminv 19547 | . . . 4 ⊢ (𝜑 → (𝐺 Σg ((invg‘𝐺) ∘ 𝐻)) = ((invg‘𝐺)‘(𝐺 Σg 𝐻))) |
29 | 28 | oveq2d 7291 | . . 3 ⊢ (𝜑 → ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
30 | 27, 29 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
31 | 8 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
32 | 15 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
33 | gsumsub.m | . . . . . . 7 ⊢ − = (-g‘𝐺) | |
34 | 1, 3, 9, 33 | grpsubval 18625 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
35 | 31, 32, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
36 | 35 | mpteq2dva 5174 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
37 | 8 | feqmptd 6837 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
38 | 15 | feqmptd 6837 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
39 | 7, 31, 32, 37, 38 | offval2 7553 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
40 | fvexd 6789 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
41 | 14 | feqmptd 6837 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
42 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
43 | 32, 38, 41, 42 | fmptco 7001 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
44 | 7, 31, 40, 37, 43 | offval2 7553 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
45 | 36, 39, 44 | 3eqtr4d 2788 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
46 | 45 | oveq2d 7291 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
47 | 1, 2, 6, 7, 8, 18 | gsumcl 19516 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
48 | 1, 2, 6, 7, 15, 23 | gsumcl 19516 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵) |
49 | 1, 3, 9, 33 | grpsubval 18625 | . . 3 ⊢ (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
50 | 47, 48, 49 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
51 | 30, 46, 50 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 ↦ cmpt 5157 ∘ ccom 5593 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 finSupp cfsupp 9128 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Σg cgsu 17151 Grpcgrp 18577 invgcminusg 18578 -gcsg 18579 CMndccmn 19386 Abelcabl 19387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 |
This theorem is referenced by: gsummptfssub 19550 tsmsxplem2 23305 |
Copyright terms: Public domain | W3C validator |