| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumsub | Structured version Visualization version GIF version | ||
| Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumsub.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsub.z | ⊢ 0 = (0g‘𝐺) |
| gsumsub.m | ⊢ − = (-g‘𝐺) |
| gsumsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| gsumsub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumsub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumsub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| gsumsub.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| gsumsub.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumsub | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumsub.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2731 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | gsumsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 5 | ablcmn 19694 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 7 | gsumsub.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | gsumsub.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 9 | eqid 2731 | . . . . . . 7 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 10 | ablgrp 19692 | . . . . . . . 8 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 11 | 4, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 12 | 1, 9, 11 | grpinvf1o 18917 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺):𝐵–1-1-onto→𝐵) |
| 13 | f1of 6758 | . . . . . 6 ⊢ ((invg‘𝐺):𝐵–1-1-onto→𝐵 → (invg‘𝐺):𝐵⟶𝐵) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
| 15 | gsumsub.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
| 16 | fco 6670 | . . . . 5 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
| 18 | gsumsub.fn | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 19 | 2 | fvexi 6831 | . . . . . 6 ⊢ 0 ∈ V |
| 20 | 19 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
| 21 | 1 | fvexi 6831 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 23 | gsumsub.hn | . . . . 5 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
| 24 | 2, 9 | grpinvid 18907 | . . . . . 6 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 25 | 11, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 26 | 20, 15, 14, 7, 22, 23, 25 | fsuppco2 9282 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) finSupp 0 ) |
| 27 | 1, 2, 3, 6, 7, 8, 17, 18, 26 | gsumadd 19830 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻)))) |
| 28 | 1, 2, 9, 4, 7, 15, 23 | gsuminv 19853 | . . . 4 ⊢ (𝜑 → (𝐺 Σg ((invg‘𝐺) ∘ 𝐻)) = ((invg‘𝐺)‘(𝐺 Σg 𝐻))) |
| 29 | 28 | oveq2d 7357 | . . 3 ⊢ (𝜑 → ((𝐺 Σg 𝐹)(+g‘𝐺)(𝐺 Σg ((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
| 30 | 27, 29 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
| 31 | 8 | ffvelcdmda 7012 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
| 32 | 15 | ffvelcdmda 7012 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
| 33 | gsumsub.m | . . . . . . 7 ⊢ − = (-g‘𝐺) | |
| 34 | 1, 3, 9, 33 | grpsubval 18893 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 35 | 31, 32, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 36 | 35 | mpteq2dva 5179 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 37 | 8 | feqmptd 6885 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 38 | 15 | feqmptd 6885 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
| 39 | 7, 31, 32, 37, 38 | offval2 7625 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
| 40 | fvexd 6832 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
| 41 | 14 | feqmptd 6885 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
| 42 | fveq2 6817 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
| 43 | 32, 38, 41, 42 | fmptco 7057 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 44 | 7, 31, 40, 37, 43 | offval2 7625 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 45 | 36, 39, 44 | 3eqtr4d 2776 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
| 46 | 45 | oveq2d 7357 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = (𝐺 Σg (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
| 47 | 1, 2, 6, 7, 8, 18 | gsumcl 19822 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
| 48 | 1, 2, 6, 7, 15, 23 | gsumcl 19822 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵) |
| 49 | 1, 3, 9, 33 | grpsubval 18893 | . . 3 ⊢ (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
| 50 | 47, 48, 49 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g‘𝐺)((invg‘𝐺)‘(𝐺 Σg 𝐻)))) |
| 51 | 30, 46, 50 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f − 𝐻)) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 ↦ cmpt 5167 ∘ ccom 5615 ⟶wf 6472 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 finSupp cfsupp 9240 Basecbs 17115 +gcplusg 17156 0gc0g 17338 Σg cgsu 17339 Grpcgrp 18841 invgcminusg 18842 -gcsg 18843 CMndccmn 19687 Abelcabl 19688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-gsum 17341 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 |
| This theorem is referenced by: gsummptfssub 19856 tsmsxplem2 24064 |
| Copyright terms: Public domain | W3C validator |