Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version |
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | pwexg 5301 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: undefval 8092 mapex 8621 pmvalg 8626 fopwdom 8867 pwdom 8916 fineqvlem 9037 fival 9171 fipwuni 9185 hartogslem2 9302 wdompwdom 9337 harwdom 9350 canthwe 10407 canthp1lem2 10409 gchdjuidm 10424 gchpwdom 10426 gchhar 10435 prdsmulr 17170 selvffval 21326 toponsspwpw 22071 mretopd 22243 ordtbaslem 22339 ptcmplem1 23203 isust 23355 blfvalps 23536 carsgval 32270 neibastop2lem 34549 bj-imdirvallem 35351 bj-imdirval2lem 35353 rfovcnvf1od 41612 fsovfd 41620 fsovcnvlem 41621 dssmapnvod 41628 dssmapf1od 41629 ntrneif1o 41685 ntrneicnv 41688 ntrneiel 41691 clsneiel1 41718 neicvgf1o 41724 neicvgnvo 41725 neicvgel1 41729 ntrelmap 41735 clselmap 41737 salexct 43873 psmeasurelem 44008 caragenval 44031 omeunile 44043 0ome 44067 isomennd 44069 afv2ex 44706 |
Copyright terms: Public domain | W3C validator |