| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | pwexg 5317 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pow 5304 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: fabexd 7870 undefval 8209 mapexOLD 8759 pmvalg 8764 fopwdom 9002 pwdom 9046 fineqvlem 9155 fival 9302 fipwuni 9316 hartogslem2 9435 wdompwdom 9470 harwdom 9483 canthwe 10545 canthp1lem2 10547 gchdjuidm 10562 gchpwdom 10564 gchhar 10573 prdsmulr 17363 selvffval 22018 toponsspwpw 22807 mretopd 22977 ordtbaslem 23073 ptcmplem1 23937 isust 24089 blfvalps 24269 carsgval 34277 neibastop2lem 36344 bj-imdirvallem 37164 bj-imdirval2lem 37166 rfovcnvf1od 43987 fsovfd 43995 fsovcnvlem 43996 dssmapnvod 44003 dssmapf1od 44004 ntrneif1o 44058 ntrneicnv 44061 ntrneiel 44064 clsneiel1 44091 neicvgf1o 44097 neicvgnvo 44098 neicvgel1 44102 ntrelmap 44108 clselmap 44110 salexct 46325 psmeasurelem 46461 caragenval 46484 omeunile 46496 0ome 46520 isomennd 46522 afv2ex 47208 gpgvtx 48037 gpgiedg 48038 |
| Copyright terms: Public domain | W3C validator |