![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version |
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | pwexg 5372 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3470 𝒫 cpw 4598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-pow 5359 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-in 3952 df-ss 3962 df-pw 4600 |
This theorem is referenced by: undefval 8275 mapex 8844 pmvalg 8849 fopwdom 9098 pwdom 9147 fineqvlem 9280 fival 9429 fipwuni 9443 hartogslem2 9560 wdompwdom 9595 harwdom 9608 canthwe 10668 canthp1lem2 10670 gchdjuidm 10685 gchpwdom 10687 gchhar 10696 prdsmulr 17434 selvffval 22052 toponsspwpw 22817 mretopd 22989 ordtbaslem 23085 ptcmplem1 23949 isust 24101 blfvalps 24282 carsgval 33917 neibastop2lem 35838 bj-imdirvallem 36653 bj-imdirval2lem 36655 rfovcnvf1od 43428 fsovfd 43436 fsovcnvlem 43437 dssmapnvod 43444 dssmapf1od 43445 ntrneif1o 43499 ntrneicnv 43502 ntrneiel 43505 clsneiel1 43532 neicvgf1o 43538 neicvgnvo 43539 neicvgel1 43543 ntrelmap 43549 clselmap 43551 salexct 45716 psmeasurelem 45852 caragenval 45875 omeunile 45887 0ome 45911 isomennd 45913 afv2ex 46588 |
Copyright terms: Public domain | W3C validator |