| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | pwexg 5348 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pow 5335 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: fabexd 7931 undefval 8273 mapexOLD 8844 pmvalg 8849 fopwdom 9092 pwdom 9141 fineqvlem 9268 fival 9422 fipwuni 9436 hartogslem2 9555 wdompwdom 9590 harwdom 9603 canthwe 10663 canthp1lem2 10665 gchdjuidm 10680 gchpwdom 10682 gchhar 10691 prdsmulr 17471 selvffval 22069 toponsspwpw 22858 mretopd 23028 ordtbaslem 23124 ptcmplem1 23988 isust 24140 blfvalps 24320 carsgval 34281 neibastop2lem 36324 bj-imdirvallem 37144 bj-imdirval2lem 37146 rfovcnvf1od 43975 fsovfd 43983 fsovcnvlem 43984 dssmapnvod 43991 dssmapf1od 43992 ntrneif1o 44046 ntrneicnv 44049 ntrneiel 44052 clsneiel1 44079 neicvgf1o 44085 neicvgnvo 44086 neicvgel1 44090 ntrelmap 44096 clselmap 44098 salexct 46311 psmeasurelem 46447 caragenval 46470 omeunile 46482 0ome 46506 isomennd 46508 afv2ex 47191 gpgvtx 47995 gpgiedg 47996 |
| Copyright terms: Public domain | W3C validator |