| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | pwexg 5336 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: fabexd 7916 undefval 8258 mapexOLD 8808 pmvalg 8813 fopwdom 9054 pwdom 9099 fineqvlem 9216 fival 9370 fipwuni 9384 hartogslem2 9503 wdompwdom 9538 harwdom 9551 canthwe 10611 canthp1lem2 10613 gchdjuidm 10628 gchpwdom 10630 gchhar 10639 prdsmulr 17429 selvffval 22027 toponsspwpw 22816 mretopd 22986 ordtbaslem 23082 ptcmplem1 23946 isust 24098 blfvalps 24278 carsgval 34301 neibastop2lem 36355 bj-imdirvallem 37175 bj-imdirval2lem 37177 rfovcnvf1od 44000 fsovfd 44008 fsovcnvlem 44009 dssmapnvod 44016 dssmapf1od 44017 ntrneif1o 44071 ntrneicnv 44074 ntrneiel 44077 clsneiel1 44104 neicvgf1o 44110 neicvgnvo 44111 neicvgel1 44115 ntrelmap 44121 clselmap 44123 salexct 46339 psmeasurelem 46475 caragenval 46498 omeunile 46510 0ome 46534 isomennd 46536 afv2ex 47219 gpgvtx 48038 gpgiedg 48039 |
| Copyright terms: Public domain | W3C validator |