MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwexd Structured version   Visualization version   GIF version

Theorem pwexd 5318
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
pwexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
pwexd (𝜑 → 𝒫 𝐴 ∈ V)

Proof of Theorem pwexd
StepHypRef Expression
1 pwexd.1 . 2 (𝜑𝐴𝑉)
2 pwexg 5317 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
31, 2syl 17 1 (𝜑 → 𝒫 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3436  𝒫 cpw 4551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-pow 5304
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-ss 3920  df-pw 4553
This theorem is referenced by:  fabexd  7870  undefval  8209  mapexOLD  8759  pmvalg  8764  fopwdom  9002  pwdom  9046  fineqvlem  9155  fival  9302  fipwuni  9316  hartogslem2  9435  wdompwdom  9470  harwdom  9483  canthwe  10545  canthp1lem2  10547  gchdjuidm  10562  gchpwdom  10564  gchhar  10573  prdsmulr  17363  selvffval  22018  toponsspwpw  22807  mretopd  22977  ordtbaslem  23073  ptcmplem1  23937  isust  24089  blfvalps  24269  carsgval  34277  neibastop2lem  36344  bj-imdirvallem  37164  bj-imdirval2lem  37166  rfovcnvf1od  43987  fsovfd  43995  fsovcnvlem  43996  dssmapnvod  44003  dssmapf1od  44004  ntrneif1o  44058  ntrneicnv  44061  ntrneiel  44064  clsneiel1  44091  neicvgf1o  44097  neicvgnvo  44098  neicvgel1  44102  ntrelmap  44108  clselmap  44110  salexct  46325  psmeasurelem  46461  caragenval  46484  omeunile  46496  0ome  46520  isomennd  46522  afv2ex  47208  gpgvtx  48037  gpgiedg  48038
  Copyright terms: Public domain W3C validator