| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | pwexg 5314 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: fabexd 7867 undefval 8206 mapexOLD 8756 pmvalg 8761 fopwdom 8998 pwdom 9042 fineqvlem 9150 fival 9296 fipwuni 9310 hartogslem2 9429 wdompwdom 9464 harwdom 9477 canthwe 10542 canthp1lem2 10544 gchdjuidm 10559 gchpwdom 10561 gchhar 10570 prdsmulr 17363 selvffval 22048 toponsspwpw 22837 mretopd 23007 ordtbaslem 23103 ptcmplem1 23967 isust 24119 blfvalps 24298 esplympl 33588 carsgval 34316 neibastop2lem 36404 bj-imdirvallem 37224 bj-imdirval2lem 37226 rfovcnvf1od 44096 fsovfd 44104 fsovcnvlem 44105 dssmapnvod 44112 dssmapf1od 44113 ntrneif1o 44167 ntrneicnv 44170 ntrneiel 44173 clsneiel1 44200 neicvgf1o 44206 neicvgnvo 44207 neicvgel1 44211 ntrelmap 44217 clselmap 44219 salexct 46431 psmeasurelem 46567 caragenval 46590 omeunile 46602 0ome 46626 isomennd 46628 afv2ex 47313 gpgvtx 48142 gpgiedg 48143 |
| Copyright terms: Public domain | W3C validator |