| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | pwexg 5328 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pow 5315 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: fabexd 7893 undefval 8232 mapexOLD 8782 pmvalg 8787 fopwdom 9026 pwdom 9070 fineqvlem 9185 fival 9339 fipwuni 9353 hartogslem2 9472 wdompwdom 9507 harwdom 9520 canthwe 10580 canthp1lem2 10582 gchdjuidm 10597 gchpwdom 10599 gchhar 10608 prdsmulr 17398 selvffval 22053 toponsspwpw 22842 mretopd 23012 ordtbaslem 23108 ptcmplem1 23972 isust 24124 blfvalps 24304 carsgval 34287 neibastop2lem 36341 bj-imdirvallem 37161 bj-imdirval2lem 37163 rfovcnvf1od 43986 fsovfd 43994 fsovcnvlem 43995 dssmapnvod 44002 dssmapf1od 44003 ntrneif1o 44057 ntrneicnv 44060 ntrneiel 44063 clsneiel1 44090 neicvgf1o 44096 neicvgnvo 44097 neicvgel1 44101 ntrelmap 44107 clselmap 44109 salexct 46325 psmeasurelem 46461 caragenval 46484 omeunile 46496 0ome 46520 isomennd 46522 afv2ex 47208 gpgvtx 48027 gpgiedg 48028 |
| Copyright terms: Public domain | W3C validator |