| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | pwexg 5333 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pow 5320 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: fabexd 7913 undefval 8255 mapexOLD 8805 pmvalg 8810 fopwdom 9049 pwdom 9093 fineqvlem 9209 fival 9363 fipwuni 9377 hartogslem2 9496 wdompwdom 9531 harwdom 9544 canthwe 10604 canthp1lem2 10606 gchdjuidm 10621 gchpwdom 10623 gchhar 10632 prdsmulr 17422 selvffval 22020 toponsspwpw 22809 mretopd 22979 ordtbaslem 23075 ptcmplem1 23939 isust 24091 blfvalps 24271 carsgval 34294 neibastop2lem 36348 bj-imdirvallem 37168 bj-imdirval2lem 37170 rfovcnvf1od 43993 fsovfd 44001 fsovcnvlem 44002 dssmapnvod 44009 dssmapf1od 44010 ntrneif1o 44064 ntrneicnv 44067 ntrneiel 44070 clsneiel1 44097 neicvgf1o 44103 neicvgnvo 44104 neicvgel1 44108 ntrelmap 44114 clselmap 44116 salexct 46332 psmeasurelem 46468 caragenval 46491 omeunile 46503 0ome 46527 isomennd 46529 afv2ex 47215 gpgvtx 48034 gpgiedg 48035 |
| Copyright terms: Public domain | W3C validator |