![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version |
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | pwexg 5396 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: fabexd 7975 undefval 8317 mapexOLD 8890 pmvalg 8895 fopwdom 9146 pwdom 9195 fineqvlem 9325 fival 9481 fipwuni 9495 hartogslem2 9612 wdompwdom 9647 harwdom 9660 canthwe 10720 canthp1lem2 10722 gchdjuidm 10737 gchpwdom 10739 gchhar 10748 prdsmulr 17519 selvffval 22160 toponsspwpw 22949 mretopd 23121 ordtbaslem 23217 ptcmplem1 24081 isust 24233 blfvalps 24414 carsgval 34268 neibastop2lem 36326 bj-imdirvallem 37146 bj-imdirval2lem 37148 rfovcnvf1od 43966 fsovfd 43974 fsovcnvlem 43975 dssmapnvod 43982 dssmapf1od 43983 ntrneif1o 44037 ntrneicnv 44040 ntrneiel 44043 clsneiel1 44070 neicvgf1o 44076 neicvgnvo 44077 neicvgel1 44081 ntrelmap 44087 clselmap 44089 salexct 46255 psmeasurelem 46391 caragenval 46414 omeunile 46426 0ome 46450 isomennd 46452 afv2ex 47129 |
Copyright terms: Public domain | W3C validator |