Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version |
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | pwexg 5296 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: undefval 8063 mapex 8579 pmvalg 8584 fopwdom 8820 pwdom 8865 fineqvlem 8966 fival 9101 fipwuni 9115 hartogslem2 9232 wdompwdom 9267 harwdom 9280 canthwe 10338 canthp1lem2 10340 gchdjuidm 10355 gchpwdom 10357 gchhar 10366 prdsmulr 17087 selvffval 21236 toponsspwpw 21979 mretopd 22151 ordtbaslem 22247 ptcmplem1 23111 isust 23263 blfvalps 23444 carsgval 32170 neibastop2lem 34476 bj-imdirvallem 35278 bj-imdirval2lem 35280 rfovcnvf1od 41501 fsovfd 41509 fsovcnvlem 41510 dssmapnvod 41517 dssmapf1od 41518 ntrneif1o 41574 ntrneicnv 41577 ntrneiel 41580 clsneiel1 41607 neicvgf1o 41613 neicvgnvo 41614 neicvgel1 41618 ntrelmap 41624 clselmap 41626 salexct 43763 psmeasurelem 43898 caragenval 43921 omeunile 43933 0ome 43957 isomennd 43959 afv2ex 44593 |
Copyright terms: Public domain | W3C validator |