![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexd | Structured version Visualization version GIF version |
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pwexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
pwexd | ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | pwexg 5383 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 𝒫 cpw 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-pow 5370 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-pw 4606 |
This theorem is referenced by: fabexd 7957 undefval 8299 mapexOLD 8870 pmvalg 8875 fopwdom 9118 pwdom 9167 fineqvlem 9295 fival 9449 fipwuni 9463 hartogslem2 9580 wdompwdom 9615 harwdom 9628 canthwe 10688 canthp1lem2 10690 gchdjuidm 10705 gchpwdom 10707 gchhar 10716 prdsmulr 17505 selvffval 22154 toponsspwpw 22943 mretopd 23115 ordtbaslem 23211 ptcmplem1 24075 isust 24227 blfvalps 24408 carsgval 34284 neibastop2lem 36342 bj-imdirvallem 37162 bj-imdirval2lem 37164 rfovcnvf1od 43993 fsovfd 44001 fsovcnvlem 44002 dssmapnvod 44009 dssmapf1od 44010 ntrneif1o 44064 ntrneicnv 44067 ntrneiel 44070 clsneiel1 44097 neicvgf1o 44103 neicvgnvo 44104 neicvgel1 44108 ntrelmap 44114 clselmap 44116 salexct 46289 psmeasurelem 46425 caragenval 46448 omeunile 46460 0ome 46484 isomennd 46486 afv2ex 47163 gpgvtx 47937 gpgiedg 47938 |
Copyright terms: Public domain | W3C validator |