Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atllat | Structured version Visualization version GIF version |
Description: An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atllat | ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
4 | eqid 2738 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
5 | eqid 2738 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isatl 37313 | . 2 ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (Base‘𝐾) ∈ dom (glb‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥 ≠ (0.‘𝐾) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝(le‘𝐾)𝑥))) |
7 | 6 | simp1bi 1144 | 1 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 Basecbs 16912 lecple 16969 glbcglb 18028 0.cp0 18141 Latclat 18149 Atomscatm 37277 AtLatcal 37278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 df-atl 37312 |
This theorem is referenced by: atlpos 37315 atnle 37331 atlatmstc 37333 cvllat 37340 hllat 37377 snatpsubN 37764 |
Copyright terms: Public domain | W3C validator |