| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atllat | Structured version Visualization version GIF version | ||
| Description: An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| atllat | ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 4 | eqid 2733 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 5 | eqid 2733 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | isatl 39419 | . 2 ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (Base‘𝐾) ∈ dom (glb‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥 ≠ (0.‘𝐾) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝(le‘𝐾)𝑥))) |
| 7 | 6 | simp1bi 1145 | 1 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 Basecbs 17122 lecple 17170 glbcglb 18218 0.cp0 18329 Latclat 18339 Atomscatm 39383 AtLatcal 39384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-dm 5629 df-iota 6442 df-fv 6494 df-atl 39418 |
| This theorem is referenced by: atlpos 39421 atnle 39437 atlatmstc 39439 cvllat 39446 hllat 39483 snatpsubN 39870 |
| Copyright terms: Public domain | W3C validator |