Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atllat Structured version   Visualization version   GIF version

Theorem atllat 37314
Description: An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.)
Assertion
Ref Expression
atllat (𝐾 ∈ AtLat → 𝐾 ∈ Lat)

Proof of Theorem atllat
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . 3 (glb‘𝐾) = (glb‘𝐾)
3 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
4 eqid 2738 . . 3 (0.‘𝐾) = (0.‘𝐾)
5 eqid 2738 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
61, 2, 3, 4, 5isatl 37313 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (Base‘𝐾) ∈ dom (glb‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥 ≠ (0.‘𝐾) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝(le‘𝐾)𝑥)))
76simp1bi 1144 1 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  dom cdm 5589  cfv 6433  Basecbs 16912  lecple 16969  glbcglb 18028  0.cp0 18141  Latclat 18149  Atomscatm 37277  AtLatcal 37278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441  df-atl 37312
This theorem is referenced by:  atlpos  37315  atnle  37331  atlatmstc  37333  cvllat  37340  hllat  37377  snatpsubN  37764
  Copyright terms: Public domain W3C validator