![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atllat | Structured version Visualization version GIF version |
Description: An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atllat | โข (๐พ โ AtLat โ ๐พ โ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 โข (Baseโ๐พ) = (Baseโ๐พ) | |
2 | eqid 2733 | . . 3 โข (glbโ๐พ) = (glbโ๐พ) | |
3 | eqid 2733 | . . 3 โข (leโ๐พ) = (leโ๐พ) | |
4 | eqid 2733 | . . 3 โข (0.โ๐พ) = (0.โ๐พ) | |
5 | eqid 2733 | . . 3 โข (Atomsโ๐พ) = (Atomsโ๐พ) | |
6 | 1, 2, 3, 4, 5 | isatl 38169 | . 2 โข (๐พ โ AtLat โ (๐พ โ Lat โง (Baseโ๐พ) โ dom (glbโ๐พ) โง โ๐ฅ โ (Baseโ๐พ)(๐ฅ โ (0.โ๐พ) โ โ๐ โ (Atomsโ๐พ)๐(leโ๐พ)๐ฅ))) |
7 | 6 | simp1bi 1146 | 1 โข (๐พ โ AtLat โ ๐พ โ Lat) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wcel 2107 โ wne 2941 โwral 3062 โwrex 3071 class class class wbr 5149 dom cdm 5677 โcfv 6544 Basecbs 17144 lecple 17204 glbcglb 18263 0.cp0 18376 Latclat 18384 Atomscatm 38133 AtLatcal 38134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-dm 5687 df-iota 6496 df-fv 6552 df-atl 38168 |
This theorem is referenced by: atlpos 38171 atnle 38187 atlatmstc 38189 cvllat 38196 hllat 38233 snatpsubN 38621 |
Copyright terms: Public domain | W3C validator |