| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atllat | Structured version Visualization version GIF version | ||
| Description: An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| atllat | ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 5 | eqid 2729 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | isatl 39292 | . 2 ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (Base‘𝐾) ∈ dom (glb‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥 ≠ (0.‘𝐾) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝(le‘𝐾)𝑥))) |
| 7 | 6 | simp1bi 1145 | 1 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 Basecbs 17179 lecple 17227 glbcglb 18271 0.cp0 18382 Latclat 18390 Atomscatm 39256 AtLatcal 39257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 df-atl 39291 |
| This theorem is referenced by: atlpos 39294 atnle 39310 atlatmstc 39312 cvllat 39319 hllat 39356 snatpsubN 39744 |
| Copyright terms: Public domain | W3C validator |