![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atllat | Structured version Visualization version GIF version |
Description: An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atllat | โข (๐พ โ AtLat โ ๐พ โ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 โข (Baseโ๐พ) = (Baseโ๐พ) | |
2 | eqid 2724 | . . 3 โข (glbโ๐พ) = (glbโ๐พ) | |
3 | eqid 2724 | . . 3 โข (leโ๐พ) = (leโ๐พ) | |
4 | eqid 2724 | . . 3 โข (0.โ๐พ) = (0.โ๐พ) | |
5 | eqid 2724 | . . 3 โข (Atomsโ๐พ) = (Atomsโ๐พ) | |
6 | 1, 2, 3, 4, 5 | isatl 38673 | . 2 โข (๐พ โ AtLat โ (๐พ โ Lat โง (Baseโ๐พ) โ dom (glbโ๐พ) โง โ๐ฅ โ (Baseโ๐พ)(๐ฅ โ (0.โ๐พ) โ โ๐ โ (Atomsโ๐พ)๐(leโ๐พ)๐ฅ))) |
7 | 6 | simp1bi 1142 | 1 โข (๐พ โ AtLat โ ๐พ โ Lat) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wcel 2098 โ wne 2932 โwral 3053 โwrex 3062 class class class wbr 5139 dom cdm 5667 โcfv 6534 Basecbs 17149 lecple 17209 glbcglb 18271 0.cp0 18384 Latclat 18392 Atomscatm 38637 AtLatcal 38638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-dm 5677 df-iota 6486 df-fv 6542 df-atl 38672 |
This theorem is referenced by: atlpos 38675 atnle 38691 atlatmstc 38693 cvllat 38700 hllat 38737 snatpsubN 39125 |
Copyright terms: Public domain | W3C validator |