Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atllat Structured version   Visualization version   GIF version

Theorem atllat 38170
Description: An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.)
Assertion
Ref Expression
atllat (๐พ โˆˆ AtLat โ†’ ๐พ โˆˆ Lat)

Proof of Theorem atllat
Dummy variables ๐‘ฅ ๐‘ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Baseโ€˜๐พ) = (Baseโ€˜๐พ)
2 eqid 2733 . . 3 (glbโ€˜๐พ) = (glbโ€˜๐พ)
3 eqid 2733 . . 3 (leโ€˜๐พ) = (leโ€˜๐พ)
4 eqid 2733 . . 3 (0.โ€˜๐พ) = (0.โ€˜๐พ)
5 eqid 2733 . . 3 (Atomsโ€˜๐พ) = (Atomsโ€˜๐พ)
61, 2, 3, 4, 5isatl 38169 . 2 (๐พ โˆˆ AtLat โ†” (๐พ โˆˆ Lat โˆง (Baseโ€˜๐พ) โˆˆ dom (glbโ€˜๐พ) โˆง โˆ€๐‘ฅ โˆˆ (Baseโ€˜๐พ)(๐‘ฅ โ‰  (0.โ€˜๐พ) โ†’ โˆƒ๐‘ โˆˆ (Atomsโ€˜๐พ)๐‘(leโ€˜๐พ)๐‘ฅ)))
76simp1bi 1146 1 (๐พ โˆˆ AtLat โ†’ ๐พ โˆˆ Lat)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆˆ wcel 2107   โ‰  wne 2941  โˆ€wral 3062  โˆƒwrex 3071   class class class wbr 5149  dom cdm 5677  โ€˜cfv 6544  Basecbs 17144  lecple 17204  glbcglb 18263  0.cp0 18376  Latclat 18384  Atomscatm 38133  AtLatcal 38134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-dm 5687  df-iota 6496  df-fv 6552  df-atl 38168
This theorem is referenced by:  atlpos  38171  atnle  38187  atlatmstc  38189  cvllat  38196  hllat  38233  snatpsubN  38621
  Copyright terms: Public domain W3C validator