Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atllat Structured version   Visualization version   GIF version

Theorem atllat 37241
Description: An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.)
Assertion
Ref Expression
atllat (𝐾 ∈ AtLat → 𝐾 ∈ Lat)

Proof of Theorem atllat
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . 3 (glb‘𝐾) = (glb‘𝐾)
3 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
4 eqid 2738 . . 3 (0.‘𝐾) = (0.‘𝐾)
5 eqid 2738 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
61, 2, 3, 4, 5isatl 37240 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (Base‘𝐾) ∈ dom (glb‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥 ≠ (0.‘𝐾) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝(le‘𝐾)𝑥)))
76simp1bi 1143 1 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  wral 3063  wrex 3064   class class class wbr 5070  dom cdm 5580  cfv 6418  Basecbs 16840  lecple 16895  glbcglb 17943  0.cp0 18056  Latclat 18064  Atomscatm 37204  AtLatcal 37205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426  df-atl 37239
This theorem is referenced by:  atlpos  37242  atnle  37258  atlatmstc  37260  cvllat  37267  hllat  37304  snatpsubN  37691
  Copyright terms: Public domain W3C validator