![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 39316 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | atllat 39256 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18501 AtLatcal 39220 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-atl 39254 df-cvlat 39278 df-hlat 39307 |
This theorem is referenced by: hllatd 39320 hlpos 39322 hlatjcl 39323 hlatjcom 39324 hlatjidm 39325 hlatjass 39326 hlatj32 39328 hlatj4 39330 hlatlej1 39331 atnlej1 39336 atnlej2 39337 hlateq 39356 hlrelat5N 39358 hlrelat2 39360 cvr2N 39368 cvrval5 39372 cvrexchlem 39376 cvrexch 39377 cvratlem 39378 cvrat 39379 cvrat2 39386 atcvrj2b 39389 atltcvr 39392 atlelt 39395 cvrat3 39399 cvrat4 39400 cvrat42 39401 2atjm 39402 3noncolr2 39406 3dimlem3OLDN 39419 3dimlem4OLDN 39422 1cvrat 39433 ps-1 39434 ps-2 39435 hlatexch3N 39437 3at 39447 llnneat 39471 lplni2 39494 2atnelpln 39501 lplnneat 39502 lplnnelln 39503 islpln2a 39505 2lplnmN 39516 2llnmj 39517 2llnm2N 39525 2llnm3N 39526 2llnm4 39527 2llnmeqat 39528 islvol5 39536 3atnelvolN 39543 lvolneatN 39545 lvolnelln 39546 lvolnelpln 39547 2lplnm2N 39578 2lplnmj 39579 pmap11 39719 isline3 39733 lncvrelatN 39738 2atm2atN 39742 2llnma1b 39743 2llnma3r 39745 paddasslem16 39792 paddass 39795 padd12N 39796 pmod2iN 39806 pmodN 39807 pmapjat1 39810 pmapjat2 39811 pmapjlln1 39812 hlmod1i 39813 atmod2i1 39818 atmod2i2 39819 atmod3i1 39821 atmod3i2 39822 atmod4i1 39823 atmod4i2 39824 llnexch2N 39827 polsubN 39864 paddunN 39884 pmapj2N 39886 pmapocjN 39887 psubclinN 39905 paddatclN 39906 linepsubclN 39908 lhpocnle 39973 lhpjat2 39978 lhpmcvr 39980 lhpm0atN 39986 lhpmatb 39988 trlval2 40120 trlcl 40121 trlle 40141 cdlemd1 40155 cdleme0cp 40171 cdleme0cq 40172 cdleme1b 40183 cdleme1 40184 cdleme2 40185 cdleme3b 40186 cdleme3c 40187 cdleme3e 40189 cdleme9b 40209 cdlemedb 40254 cdleme20zN 40258 cdleme19a 40260 cdlemf2 40519 tendoidcl 40726 dia1eldmN 40998 dialss 41003 dia1N 41010 diaglbN 41012 diaintclN 41015 docaclN 41081 doca2N 41083 djajN 41094 dibglbN 41123 dibintclN 41124 dihlsscpre 41191 dih2dimbALTN 41202 dih1 41243 dihglblem5apreN 41248 dihglblem5aN 41249 dihglblem2aN 41250 dihmeetcl 41302 dochvalr 41314 djhlj 41358 |
Copyright terms: Public domain | W3C validator |