Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 37301 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | atllat 37241 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18064 AtLatcal 37205 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 df-atl 37239 df-cvlat 37263 df-hlat 37292 |
This theorem is referenced by: hllatd 37305 hlpos 37307 hlatjcl 37308 hlatjcom 37309 hlatjidm 37310 hlatjass 37311 hlatj32 37313 hlatj4 37315 hlatlej1 37316 atnlej1 37320 atnlej2 37321 hlateq 37340 hlrelat5N 37342 hlrelat2 37344 cvr2N 37352 cvrval5 37356 cvrexchlem 37360 cvrexch 37361 cvratlem 37362 cvrat 37363 cvrat2 37370 atcvrj2b 37373 atltcvr 37376 atlelt 37379 cvrat3 37383 cvrat4 37384 cvrat42 37385 2atjm 37386 3noncolr2 37390 3dimlem3OLDN 37403 3dimlem4OLDN 37406 1cvrat 37417 ps-1 37418 ps-2 37419 hlatexch3N 37421 3at 37431 llnneat 37455 lplni2 37478 2atnelpln 37485 lplnneat 37486 lplnnelln 37487 islpln2a 37489 2lplnmN 37500 2llnmj 37501 2llnm2N 37509 2llnm3N 37510 2llnm4 37511 2llnmeqat 37512 islvol5 37520 3atnelvolN 37527 lvolneatN 37529 lvolnelln 37530 lvolnelpln 37531 2lplnm2N 37562 2lplnmj 37563 pmap11 37703 isline3 37717 lncvrelatN 37722 2atm2atN 37726 2llnma1b 37727 2llnma3r 37729 paddasslem16 37776 paddass 37779 padd12N 37780 pmod2iN 37790 pmodN 37791 pmapjat1 37794 pmapjat2 37795 pmapjlln1 37796 hlmod1i 37797 atmod2i1 37802 atmod2i2 37803 atmod3i1 37805 atmod3i2 37806 atmod4i1 37807 atmod4i2 37808 llnexch2N 37811 polsubN 37848 paddunN 37868 pmapj2N 37870 pmapocjN 37871 psubclinN 37889 paddatclN 37890 linepsubclN 37892 lhpocnle 37957 lhpjat2 37962 lhpmcvr 37964 lhpm0atN 37970 lhpmatb 37972 trlval2 38104 trlcl 38105 trlle 38125 cdlemd1 38139 cdleme0cp 38155 cdleme0cq 38156 cdleme1b 38167 cdleme1 38168 cdleme2 38169 cdleme3b 38170 cdleme3c 38171 cdleme3e 38173 cdleme9b 38193 cdlemedb 38238 cdleme20zN 38242 cdleme19a 38244 cdlemf2 38503 tendoidcl 38710 dia1eldmN 38982 dialss 38987 dia1N 38994 diaglbN 38996 diaintclN 38999 docaclN 39065 doca2N 39067 djajN 39078 dibglbN 39107 dibintclN 39108 dihlsscpre 39175 dih2dimbALTN 39186 dih1 39227 dihglblem5apreN 39232 dihglblem5aN 39233 dihglblem2aN 39234 dihmeetcl 39286 dochvalr 39298 djhlj 39342 |
Copyright terms: Public domain | W3C validator |