| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39358 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | atllat 39298 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18356 AtLatcal 39262 HLchlt 39348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 df-ov 7356 df-atl 39296 df-cvlat 39320 df-hlat 39349 |
| This theorem is referenced by: hllatd 39362 hlpos 39364 hlatjcl 39365 hlatjcom 39366 hlatjidm 39367 hlatjass 39368 hlatj32 39370 hlatj4 39372 hlatlej1 39373 atnlej1 39378 atnlej2 39379 hlateq 39398 hlrelat5N 39400 hlrelat2 39402 cvr2N 39410 cvrval5 39414 cvrexchlem 39418 cvrexch 39419 cvratlem 39420 cvrat 39421 cvrat2 39428 atcvrj2b 39431 atltcvr 39434 atlelt 39437 cvrat3 39441 cvrat4 39442 cvrat42 39443 2atjm 39444 3noncolr2 39448 3dimlem3OLDN 39461 3dimlem4OLDN 39464 1cvrat 39475 ps-1 39476 ps-2 39477 hlatexch3N 39479 3at 39489 llnneat 39513 lplni2 39536 2atnelpln 39543 lplnneat 39544 lplnnelln 39545 islpln2a 39547 2lplnmN 39558 2llnmj 39559 2llnm2N 39567 2llnm3N 39568 2llnm4 39569 2llnmeqat 39570 islvol5 39578 3atnelvolN 39585 lvolneatN 39587 lvolnelln 39588 lvolnelpln 39589 2lplnm2N 39620 2lplnmj 39621 pmap11 39761 isline3 39775 lncvrelatN 39780 2atm2atN 39784 2llnma1b 39785 2llnma3r 39787 paddasslem16 39834 paddass 39837 padd12N 39838 pmod2iN 39848 pmodN 39849 pmapjat1 39852 pmapjat2 39853 pmapjlln1 39854 hlmod1i 39855 atmod2i1 39860 atmod2i2 39861 atmod3i1 39863 atmod3i2 39864 atmod4i1 39865 atmod4i2 39866 llnexch2N 39869 polsubN 39906 paddunN 39926 pmapj2N 39928 pmapocjN 39929 psubclinN 39947 paddatclN 39948 linepsubclN 39950 lhpocnle 40015 lhpjat2 40020 lhpmcvr 40022 lhpm0atN 40028 lhpmatb 40030 trlval2 40162 trlcl 40163 trlle 40183 cdlemd1 40197 cdleme0cp 40213 cdleme0cq 40214 cdleme1b 40225 cdleme1 40226 cdleme2 40227 cdleme3b 40228 cdleme3c 40229 cdleme3e 40231 cdleme9b 40251 cdlemedb 40296 cdleme20zN 40300 cdleme19a 40302 cdlemf2 40561 tendoidcl 40768 dia1eldmN 41040 dialss 41045 dia1N 41052 diaglbN 41054 diaintclN 41057 docaclN 41123 doca2N 41125 djajN 41136 dibglbN 41165 dibintclN 41166 dihlsscpre 41233 dih2dimbALTN 41244 dih1 41285 dihglblem5apreN 41290 dihglblem5aN 41291 dihglblem2aN 41292 dihmeetcl 41344 dochvalr 41356 djhlj 41400 |
| Copyright terms: Public domain | W3C validator |