Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 37374 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | atllat 37314 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Latclat 18149 AtLatcal 37278 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-atl 37312 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: hllatd 37378 hlpos 37380 hlatjcl 37381 hlatjcom 37382 hlatjidm 37383 hlatjass 37384 hlatj32 37386 hlatj4 37388 hlatlej1 37389 atnlej1 37393 atnlej2 37394 hlateq 37413 hlrelat5N 37415 hlrelat2 37417 cvr2N 37425 cvrval5 37429 cvrexchlem 37433 cvrexch 37434 cvratlem 37435 cvrat 37436 cvrat2 37443 atcvrj2b 37446 atltcvr 37449 atlelt 37452 cvrat3 37456 cvrat4 37457 cvrat42 37458 2atjm 37459 3noncolr2 37463 3dimlem3OLDN 37476 3dimlem4OLDN 37479 1cvrat 37490 ps-1 37491 ps-2 37492 hlatexch3N 37494 3at 37504 llnneat 37528 lplni2 37551 2atnelpln 37558 lplnneat 37559 lplnnelln 37560 islpln2a 37562 2lplnmN 37573 2llnmj 37574 2llnm2N 37582 2llnm3N 37583 2llnm4 37584 2llnmeqat 37585 islvol5 37593 3atnelvolN 37600 lvolneatN 37602 lvolnelln 37603 lvolnelpln 37604 2lplnm2N 37635 2lplnmj 37636 pmap11 37776 isline3 37790 lncvrelatN 37795 2atm2atN 37799 2llnma1b 37800 2llnma3r 37802 paddasslem16 37849 paddass 37852 padd12N 37853 pmod2iN 37863 pmodN 37864 pmapjat1 37867 pmapjat2 37868 pmapjlln1 37869 hlmod1i 37870 atmod2i1 37875 atmod2i2 37876 atmod3i1 37878 atmod3i2 37879 atmod4i1 37880 atmod4i2 37881 llnexch2N 37884 polsubN 37921 paddunN 37941 pmapj2N 37943 pmapocjN 37944 psubclinN 37962 paddatclN 37963 linepsubclN 37965 lhpocnle 38030 lhpjat2 38035 lhpmcvr 38037 lhpm0atN 38043 lhpmatb 38045 trlval2 38177 trlcl 38178 trlle 38198 cdlemd1 38212 cdleme0cp 38228 cdleme0cq 38229 cdleme1b 38240 cdleme1 38241 cdleme2 38242 cdleme3b 38243 cdleme3c 38244 cdleme3e 38246 cdleme9b 38266 cdlemedb 38311 cdleme20zN 38315 cdleme19a 38317 cdlemf2 38576 tendoidcl 38783 dia1eldmN 39055 dialss 39060 dia1N 39067 diaglbN 39069 diaintclN 39072 docaclN 39138 doca2N 39140 djajN 39151 dibglbN 39180 dibintclN 39181 dihlsscpre 39248 dih2dimbALTN 39259 dih1 39300 dihglblem5apreN 39305 dihglblem5aN 39306 dihglblem2aN 39307 dihmeetcl 39359 dochvalr 39371 djhlj 39415 |
Copyright terms: Public domain | W3C validator |