| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39353 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | atllat 39293 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18390 AtLatcal 39257 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-atl 39291 df-cvlat 39315 df-hlat 39344 |
| This theorem is referenced by: hllatd 39357 hlpos 39359 hlatjcl 39360 hlatjcom 39361 hlatjidm 39362 hlatjass 39363 hlatj32 39365 hlatj4 39367 hlatlej1 39368 atnlej1 39373 atnlej2 39374 hlateq 39393 hlrelat5N 39395 hlrelat2 39397 cvr2N 39405 cvrval5 39409 cvrexchlem 39413 cvrexch 39414 cvratlem 39415 cvrat 39416 cvrat2 39423 atcvrj2b 39426 atltcvr 39429 atlelt 39432 cvrat3 39436 cvrat4 39437 cvrat42 39438 2atjm 39439 3noncolr2 39443 3dimlem3OLDN 39456 3dimlem4OLDN 39459 1cvrat 39470 ps-1 39471 ps-2 39472 hlatexch3N 39474 3at 39484 llnneat 39508 lplni2 39531 2atnelpln 39538 lplnneat 39539 lplnnelln 39540 islpln2a 39542 2lplnmN 39553 2llnmj 39554 2llnm2N 39562 2llnm3N 39563 2llnm4 39564 2llnmeqat 39565 islvol5 39573 3atnelvolN 39580 lvolneatN 39582 lvolnelln 39583 lvolnelpln 39584 2lplnm2N 39615 2lplnmj 39616 pmap11 39756 isline3 39770 lncvrelatN 39775 2atm2atN 39779 2llnma1b 39780 2llnma3r 39782 paddasslem16 39829 paddass 39832 padd12N 39833 pmod2iN 39843 pmodN 39844 pmapjat1 39847 pmapjat2 39848 pmapjlln1 39849 hlmod1i 39850 atmod2i1 39855 atmod2i2 39856 atmod3i1 39858 atmod3i2 39859 atmod4i1 39860 atmod4i2 39861 llnexch2N 39864 polsubN 39901 paddunN 39921 pmapj2N 39923 pmapocjN 39924 psubclinN 39942 paddatclN 39943 linepsubclN 39945 lhpocnle 40010 lhpjat2 40015 lhpmcvr 40017 lhpm0atN 40023 lhpmatb 40025 trlval2 40157 trlcl 40158 trlle 40178 cdlemd1 40192 cdleme0cp 40208 cdleme0cq 40209 cdleme1b 40220 cdleme1 40221 cdleme2 40222 cdleme3b 40223 cdleme3c 40224 cdleme3e 40226 cdleme9b 40246 cdlemedb 40291 cdleme20zN 40295 cdleme19a 40297 cdlemf2 40556 tendoidcl 40763 dia1eldmN 41035 dialss 41040 dia1N 41047 diaglbN 41049 diaintclN 41052 docaclN 41118 doca2N 41120 djajN 41131 dibglbN 41160 dibintclN 41161 dihlsscpre 41228 dih2dimbALTN 41239 dih1 41280 dihglblem5apreN 41285 dihglblem5aN 41286 dihglblem2aN 41287 dihmeetcl 41339 dochvalr 41351 djhlj 41395 |
| Copyright terms: Public domain | W3C validator |