| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39326 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | atllat 39266 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18366 AtLatcal 39230 HLchlt 39316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 df-atl 39264 df-cvlat 39288 df-hlat 39317 |
| This theorem is referenced by: hllatd 39330 hlpos 39332 hlatjcl 39333 hlatjcom 39334 hlatjidm 39335 hlatjass 39336 hlatj32 39338 hlatj4 39340 hlatlej1 39341 atnlej1 39346 atnlej2 39347 hlateq 39366 hlrelat5N 39368 hlrelat2 39370 cvr2N 39378 cvrval5 39382 cvrexchlem 39386 cvrexch 39387 cvratlem 39388 cvrat 39389 cvrat2 39396 atcvrj2b 39399 atltcvr 39402 atlelt 39405 cvrat3 39409 cvrat4 39410 cvrat42 39411 2atjm 39412 3noncolr2 39416 3dimlem3OLDN 39429 3dimlem4OLDN 39432 1cvrat 39443 ps-1 39444 ps-2 39445 hlatexch3N 39447 3at 39457 llnneat 39481 lplni2 39504 2atnelpln 39511 lplnneat 39512 lplnnelln 39513 islpln2a 39515 2lplnmN 39526 2llnmj 39527 2llnm2N 39535 2llnm3N 39536 2llnm4 39537 2llnmeqat 39538 islvol5 39546 3atnelvolN 39553 lvolneatN 39555 lvolnelln 39556 lvolnelpln 39557 2lplnm2N 39588 2lplnmj 39589 pmap11 39729 isline3 39743 lncvrelatN 39748 2atm2atN 39752 2llnma1b 39753 2llnma3r 39755 paddasslem16 39802 paddass 39805 padd12N 39806 pmod2iN 39816 pmodN 39817 pmapjat1 39820 pmapjat2 39821 pmapjlln1 39822 hlmod1i 39823 atmod2i1 39828 atmod2i2 39829 atmod3i1 39831 atmod3i2 39832 atmod4i1 39833 atmod4i2 39834 llnexch2N 39837 polsubN 39874 paddunN 39894 pmapj2N 39896 pmapocjN 39897 psubclinN 39915 paddatclN 39916 linepsubclN 39918 lhpocnle 39983 lhpjat2 39988 lhpmcvr 39990 lhpm0atN 39996 lhpmatb 39998 trlval2 40130 trlcl 40131 trlle 40151 cdlemd1 40165 cdleme0cp 40181 cdleme0cq 40182 cdleme1b 40193 cdleme1 40194 cdleme2 40195 cdleme3b 40196 cdleme3c 40197 cdleme3e 40199 cdleme9b 40219 cdlemedb 40264 cdleme20zN 40268 cdleme19a 40270 cdlemf2 40529 tendoidcl 40736 dia1eldmN 41008 dialss 41013 dia1N 41020 diaglbN 41022 diaintclN 41025 docaclN 41091 doca2N 41093 djajN 41104 dibglbN 41133 dibintclN 41134 dihlsscpre 41201 dih2dimbALTN 41212 dih1 41253 dihglblem5apreN 41258 dihglblem5aN 41259 dihglblem2aN 41260 dihmeetcl 41312 dochvalr 41324 djhlj 41368 |
| Copyright terms: Public domain | W3C validator |