| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39532 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | atllat 39472 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Latclat 18345 AtLatcal 39436 HLchlt 39522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-dm 5631 df-iota 6445 df-fv 6497 df-ov 7358 df-atl 39470 df-cvlat 39494 df-hlat 39523 |
| This theorem is referenced by: hllatd 39536 hlpos 39538 hlatjcl 39539 hlatjcom 39540 hlatjidm 39541 hlatjass 39542 hlatj32 39544 hlatj4 39546 hlatlej1 39547 atnlej1 39551 atnlej2 39552 hlateq 39571 hlrelat5N 39573 hlrelat2 39575 cvr2N 39583 cvrval5 39587 cvrexchlem 39591 cvrexch 39592 cvratlem 39593 cvrat 39594 cvrat2 39601 atcvrj2b 39604 atltcvr 39607 atlelt 39610 cvrat3 39614 cvrat4 39615 cvrat42 39616 2atjm 39617 3noncolr2 39621 3dimlem3OLDN 39634 3dimlem4OLDN 39637 1cvrat 39648 ps-1 39649 ps-2 39650 hlatexch3N 39652 3at 39662 llnneat 39686 lplni2 39709 2atnelpln 39716 lplnneat 39717 lplnnelln 39718 islpln2a 39720 2lplnmN 39731 2llnmj 39732 2llnm2N 39740 2llnm3N 39741 2llnm4 39742 2llnmeqat 39743 islvol5 39751 3atnelvolN 39758 lvolneatN 39760 lvolnelln 39761 lvolnelpln 39762 2lplnm2N 39793 2lplnmj 39794 pmap11 39934 isline3 39948 lncvrelatN 39953 2atm2atN 39957 2llnma1b 39958 2llnma3r 39960 paddasslem16 40007 paddass 40010 padd12N 40011 pmod2iN 40021 pmodN 40022 pmapjat1 40025 pmapjat2 40026 pmapjlln1 40027 hlmod1i 40028 atmod2i1 40033 atmod2i2 40034 atmod3i1 40036 atmod3i2 40037 atmod4i1 40038 atmod4i2 40039 llnexch2N 40042 polsubN 40079 paddunN 40099 pmapj2N 40101 pmapocjN 40102 psubclinN 40120 paddatclN 40121 linepsubclN 40123 lhpocnle 40188 lhpjat2 40193 lhpmcvr 40195 lhpm0atN 40201 lhpmatb 40203 trlval2 40335 trlcl 40336 trlle 40356 cdlemd1 40370 cdleme0cp 40386 cdleme0cq 40387 cdleme1b 40398 cdleme1 40399 cdleme2 40400 cdleme3b 40401 cdleme3c 40402 cdleme3e 40404 cdleme9b 40424 cdlemedb 40469 cdleme20zN 40473 cdleme19a 40475 cdlemf2 40734 tendoidcl 40941 dia1eldmN 41213 dialss 41218 dia1N 41225 diaglbN 41227 diaintclN 41230 docaclN 41296 doca2N 41298 djajN 41309 dibglbN 41338 dibintclN 41339 dihlsscpre 41406 dih2dimbALTN 41417 dih1 41458 dihglblem5apreN 41463 dihglblem5aN 41464 dihglblem2aN 41465 dihmeetcl 41517 dochvalr 41529 djhlj 41573 |
| Copyright terms: Public domain | W3C validator |