| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39360 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | atllat 39300 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18397 AtLatcal 39264 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-atl 39298 df-cvlat 39322 df-hlat 39351 |
| This theorem is referenced by: hllatd 39364 hlpos 39366 hlatjcl 39367 hlatjcom 39368 hlatjidm 39369 hlatjass 39370 hlatj32 39372 hlatj4 39374 hlatlej1 39375 atnlej1 39380 atnlej2 39381 hlateq 39400 hlrelat5N 39402 hlrelat2 39404 cvr2N 39412 cvrval5 39416 cvrexchlem 39420 cvrexch 39421 cvratlem 39422 cvrat 39423 cvrat2 39430 atcvrj2b 39433 atltcvr 39436 atlelt 39439 cvrat3 39443 cvrat4 39444 cvrat42 39445 2atjm 39446 3noncolr2 39450 3dimlem3OLDN 39463 3dimlem4OLDN 39466 1cvrat 39477 ps-1 39478 ps-2 39479 hlatexch3N 39481 3at 39491 llnneat 39515 lplni2 39538 2atnelpln 39545 lplnneat 39546 lplnnelln 39547 islpln2a 39549 2lplnmN 39560 2llnmj 39561 2llnm2N 39569 2llnm3N 39570 2llnm4 39571 2llnmeqat 39572 islvol5 39580 3atnelvolN 39587 lvolneatN 39589 lvolnelln 39590 lvolnelpln 39591 2lplnm2N 39622 2lplnmj 39623 pmap11 39763 isline3 39777 lncvrelatN 39782 2atm2atN 39786 2llnma1b 39787 2llnma3r 39789 paddasslem16 39836 paddass 39839 padd12N 39840 pmod2iN 39850 pmodN 39851 pmapjat1 39854 pmapjat2 39855 pmapjlln1 39856 hlmod1i 39857 atmod2i1 39862 atmod2i2 39863 atmod3i1 39865 atmod3i2 39866 atmod4i1 39867 atmod4i2 39868 llnexch2N 39871 polsubN 39908 paddunN 39928 pmapj2N 39930 pmapocjN 39931 psubclinN 39949 paddatclN 39950 linepsubclN 39952 lhpocnle 40017 lhpjat2 40022 lhpmcvr 40024 lhpm0atN 40030 lhpmatb 40032 trlval2 40164 trlcl 40165 trlle 40185 cdlemd1 40199 cdleme0cp 40215 cdleme0cq 40216 cdleme1b 40227 cdleme1 40228 cdleme2 40229 cdleme3b 40230 cdleme3c 40231 cdleme3e 40233 cdleme9b 40253 cdlemedb 40298 cdleme20zN 40302 cdleme19a 40304 cdlemf2 40563 tendoidcl 40770 dia1eldmN 41042 dialss 41047 dia1N 41054 diaglbN 41056 diaintclN 41059 docaclN 41125 doca2N 41127 djajN 41138 dibglbN 41167 dibintclN 41168 dihlsscpre 41235 dih2dimbALTN 41246 dih1 41287 dihglblem5apreN 41292 dihglblem5aN 41293 dihglblem2aN 41294 dihmeetcl 41346 dochvalr 41358 djhlj 41402 |
| Copyright terms: Public domain | W3C validator |