| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39399 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | atllat 39339 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Latclat 18332 AtLatcal 39303 HLchlt 39389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-dm 5621 df-iota 6432 df-fv 6484 df-ov 7344 df-atl 39337 df-cvlat 39361 df-hlat 39390 |
| This theorem is referenced by: hllatd 39403 hlpos 39405 hlatjcl 39406 hlatjcom 39407 hlatjidm 39408 hlatjass 39409 hlatj32 39411 hlatj4 39413 hlatlej1 39414 atnlej1 39418 atnlej2 39419 hlateq 39438 hlrelat5N 39440 hlrelat2 39442 cvr2N 39450 cvrval5 39454 cvrexchlem 39458 cvrexch 39459 cvratlem 39460 cvrat 39461 cvrat2 39468 atcvrj2b 39471 atltcvr 39474 atlelt 39477 cvrat3 39481 cvrat4 39482 cvrat42 39483 2atjm 39484 3noncolr2 39488 3dimlem3OLDN 39501 3dimlem4OLDN 39504 1cvrat 39515 ps-1 39516 ps-2 39517 hlatexch3N 39519 3at 39529 llnneat 39553 lplni2 39576 2atnelpln 39583 lplnneat 39584 lplnnelln 39585 islpln2a 39587 2lplnmN 39598 2llnmj 39599 2llnm2N 39607 2llnm3N 39608 2llnm4 39609 2llnmeqat 39610 islvol5 39618 3atnelvolN 39625 lvolneatN 39627 lvolnelln 39628 lvolnelpln 39629 2lplnm2N 39660 2lplnmj 39661 pmap11 39801 isline3 39815 lncvrelatN 39820 2atm2atN 39824 2llnma1b 39825 2llnma3r 39827 paddasslem16 39874 paddass 39877 padd12N 39878 pmod2iN 39888 pmodN 39889 pmapjat1 39892 pmapjat2 39893 pmapjlln1 39894 hlmod1i 39895 atmod2i1 39900 atmod2i2 39901 atmod3i1 39903 atmod3i2 39904 atmod4i1 39905 atmod4i2 39906 llnexch2N 39909 polsubN 39946 paddunN 39966 pmapj2N 39968 pmapocjN 39969 psubclinN 39987 paddatclN 39988 linepsubclN 39990 lhpocnle 40055 lhpjat2 40060 lhpmcvr 40062 lhpm0atN 40068 lhpmatb 40070 trlval2 40202 trlcl 40203 trlle 40223 cdlemd1 40237 cdleme0cp 40253 cdleme0cq 40254 cdleme1b 40265 cdleme1 40266 cdleme2 40267 cdleme3b 40268 cdleme3c 40269 cdleme3e 40271 cdleme9b 40291 cdlemedb 40336 cdleme20zN 40340 cdleme19a 40342 cdlemf2 40601 tendoidcl 40808 dia1eldmN 41080 dialss 41085 dia1N 41092 diaglbN 41094 diaintclN 41097 docaclN 41163 doca2N 41165 djajN 41176 dibglbN 41205 dibintclN 41206 dihlsscpre 41273 dih2dimbALTN 41284 dih1 41325 dihglblem5apreN 41330 dihglblem5aN 41331 dihglblem2aN 41332 dihmeetcl 41384 dochvalr 41396 djhlj 41440 |
| Copyright terms: Public domain | W3C validator |