| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39378 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | atllat 39318 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18441 AtLatcal 39282 HLchlt 39368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 df-atl 39316 df-cvlat 39340 df-hlat 39369 |
| This theorem is referenced by: hllatd 39382 hlpos 39384 hlatjcl 39385 hlatjcom 39386 hlatjidm 39387 hlatjass 39388 hlatj32 39390 hlatj4 39392 hlatlej1 39393 atnlej1 39398 atnlej2 39399 hlateq 39418 hlrelat5N 39420 hlrelat2 39422 cvr2N 39430 cvrval5 39434 cvrexchlem 39438 cvrexch 39439 cvratlem 39440 cvrat 39441 cvrat2 39448 atcvrj2b 39451 atltcvr 39454 atlelt 39457 cvrat3 39461 cvrat4 39462 cvrat42 39463 2atjm 39464 3noncolr2 39468 3dimlem3OLDN 39481 3dimlem4OLDN 39484 1cvrat 39495 ps-1 39496 ps-2 39497 hlatexch3N 39499 3at 39509 llnneat 39533 lplni2 39556 2atnelpln 39563 lplnneat 39564 lplnnelln 39565 islpln2a 39567 2lplnmN 39578 2llnmj 39579 2llnm2N 39587 2llnm3N 39588 2llnm4 39589 2llnmeqat 39590 islvol5 39598 3atnelvolN 39605 lvolneatN 39607 lvolnelln 39608 lvolnelpln 39609 2lplnm2N 39640 2lplnmj 39641 pmap11 39781 isline3 39795 lncvrelatN 39800 2atm2atN 39804 2llnma1b 39805 2llnma3r 39807 paddasslem16 39854 paddass 39857 padd12N 39858 pmod2iN 39868 pmodN 39869 pmapjat1 39872 pmapjat2 39873 pmapjlln1 39874 hlmod1i 39875 atmod2i1 39880 atmod2i2 39881 atmod3i1 39883 atmod3i2 39884 atmod4i1 39885 atmod4i2 39886 llnexch2N 39889 polsubN 39926 paddunN 39946 pmapj2N 39948 pmapocjN 39949 psubclinN 39967 paddatclN 39968 linepsubclN 39970 lhpocnle 40035 lhpjat2 40040 lhpmcvr 40042 lhpm0atN 40048 lhpmatb 40050 trlval2 40182 trlcl 40183 trlle 40203 cdlemd1 40217 cdleme0cp 40233 cdleme0cq 40234 cdleme1b 40245 cdleme1 40246 cdleme2 40247 cdleme3b 40248 cdleme3c 40249 cdleme3e 40251 cdleme9b 40271 cdlemedb 40316 cdleme20zN 40320 cdleme19a 40322 cdlemf2 40581 tendoidcl 40788 dia1eldmN 41060 dialss 41065 dia1N 41072 diaglbN 41074 diaintclN 41077 docaclN 41143 doca2N 41145 djajN 41156 dibglbN 41185 dibintclN 41186 dihlsscpre 41253 dih2dimbALTN 41264 dih1 41305 dihglblem5apreN 41310 dihglblem5aN 41311 dihglblem2aN 41312 dihmeetcl 41364 dochvalr 41376 djhlj 41420 |
| Copyright terms: Public domain | W3C validator |