![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hllat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is a lattice. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hllat | ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 39342 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | atllat 39282 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Latclat 18489 AtLatcal 39246 HLchlt 39332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 df-atl 39280 df-cvlat 39304 df-hlat 39333 |
This theorem is referenced by: hllatd 39346 hlpos 39348 hlatjcl 39349 hlatjcom 39350 hlatjidm 39351 hlatjass 39352 hlatj32 39354 hlatj4 39356 hlatlej1 39357 atnlej1 39362 atnlej2 39363 hlateq 39382 hlrelat5N 39384 hlrelat2 39386 cvr2N 39394 cvrval5 39398 cvrexchlem 39402 cvrexch 39403 cvratlem 39404 cvrat 39405 cvrat2 39412 atcvrj2b 39415 atltcvr 39418 atlelt 39421 cvrat3 39425 cvrat4 39426 cvrat42 39427 2atjm 39428 3noncolr2 39432 3dimlem3OLDN 39445 3dimlem4OLDN 39448 1cvrat 39459 ps-1 39460 ps-2 39461 hlatexch3N 39463 3at 39473 llnneat 39497 lplni2 39520 2atnelpln 39527 lplnneat 39528 lplnnelln 39529 islpln2a 39531 2lplnmN 39542 2llnmj 39543 2llnm2N 39551 2llnm3N 39552 2llnm4 39553 2llnmeqat 39554 islvol5 39562 3atnelvolN 39569 lvolneatN 39571 lvolnelln 39572 lvolnelpln 39573 2lplnm2N 39604 2lplnmj 39605 pmap11 39745 isline3 39759 lncvrelatN 39764 2atm2atN 39768 2llnma1b 39769 2llnma3r 39771 paddasslem16 39818 paddass 39821 padd12N 39822 pmod2iN 39832 pmodN 39833 pmapjat1 39836 pmapjat2 39837 pmapjlln1 39838 hlmod1i 39839 atmod2i1 39844 atmod2i2 39845 atmod3i1 39847 atmod3i2 39848 atmod4i1 39849 atmod4i2 39850 llnexch2N 39853 polsubN 39890 paddunN 39910 pmapj2N 39912 pmapocjN 39913 psubclinN 39931 paddatclN 39932 linepsubclN 39934 lhpocnle 39999 lhpjat2 40004 lhpmcvr 40006 lhpm0atN 40012 lhpmatb 40014 trlval2 40146 trlcl 40147 trlle 40167 cdlemd1 40181 cdleme0cp 40197 cdleme0cq 40198 cdleme1b 40209 cdleme1 40210 cdleme2 40211 cdleme3b 40212 cdleme3c 40213 cdleme3e 40215 cdleme9b 40235 cdlemedb 40280 cdleme20zN 40284 cdleme19a 40286 cdlemf2 40545 tendoidcl 40752 dia1eldmN 41024 dialss 41029 dia1N 41036 diaglbN 41038 diaintclN 41041 docaclN 41107 doca2N 41109 djajN 41120 dibglbN 41149 dibintclN 41150 dihlsscpre 41217 dih2dimbALTN 41228 dih1 41269 dihglblem5apreN 41274 dihglblem5aN 41275 dihglblem2aN 41276 dihmeetcl 41328 dochvalr 41340 djhlj 41384 |
Copyright terms: Public domain | W3C validator |