Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snatpsubN Structured version   Visualization version   GIF version

Theorem snatpsubN 39737
Description: The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
snpsub.a 𝐴 = (Atoms‘𝐾)
snpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
snatpsubN ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ∈ 𝑆)

Proof of Theorem snatpsubN
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 4768 . . . . . 6 (𝑃𝐴 → {𝑃} ⊆ 𝐴)
21adantl 481 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ⊆ 𝐴)
3 atllat 39286 . . . . . . . . . . . . . . 15 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
4 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
5 snpsub.a . . . . . . . . . . . . . . . 16 𝐴 = (Atoms‘𝐾)
64, 5atbase 39275 . . . . . . . . . . . . . . 15 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
7 eqid 2729 . . . . . . . . . . . . . . . 16 (join‘𝐾) = (join‘𝐾)
84, 7latjidm 18403 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃(join‘𝐾)𝑃) = 𝑃)
93, 6, 8syl2an 596 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
109adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1110breq2d 5114 . . . . . . . . . . . 12 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃) ↔ 𝑟(le‘𝐾)𝑃))
12 eqid 2729 . . . . . . . . . . . . . . . 16 (le‘𝐾) = (le‘𝐾)
1312, 5atcmp 39297 . . . . . . . . . . . . . . 15 ((𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
14133com23 1126 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
15143expa 1118 . . . . . . . . . . . . 13 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
1615biimpd 229 . . . . . . . . . . . 12 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
1711, 16sylbid 240 . . . . . . . . . . 11 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃) → 𝑟 = 𝑃))
1817adantld 490 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)) → 𝑟 = 𝑃))
19 velsn 4601 . . . . . . . . . . . . 13 (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃)
20 velsn 4601 . . . . . . . . . . . . 13 (𝑞 ∈ {𝑃} ↔ 𝑞 = 𝑃)
2119, 20anbi12i 628 . . . . . . . . . . . 12 ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ↔ (𝑝 = 𝑃𝑞 = 𝑃))
2221anbi1i 624 . . . . . . . . . . 11 (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)))
23 oveq12 7378 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑞 = 𝑃) → (𝑝(join‘𝐾)𝑞) = (𝑃(join‘𝐾)𝑃))
2423breq2d 5114 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑞 = 𝑃) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ↔ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
2524pm5.32i 574 . . . . . . . . . . 11 (((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
2622, 25bitri 275 . . . . . . . . . 10 (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
27 velsn 4601 . . . . . . . . . 10 (𝑟 ∈ {𝑃} ↔ 𝑟 = 𝑃)
2818, 26, 273imtr4g 296 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) → 𝑟 ∈ {𝑃}))
2928exp4b 430 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (𝑟𝐴 → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3029com23 86 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3130ralrimdv 3131 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃})))
3231ralrimivv 3176 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))
332, 32jca 511 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃})))
3433ex 412 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 → ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
35 snpsub.s . . . 4 𝑆 = (PSubSp‘𝐾)
3612, 7, 5, 35ispsubsp 39732 . . 3 (𝐾 ∈ AtLat → ({𝑃} ∈ 𝑆 ↔ ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3734, 36sylibrd 259 . 2 (𝐾 ∈ AtLat → (𝑃𝐴 → {𝑃} ∈ 𝑆))
3837imp 406 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  Latclat 18372  Atomscatm 39249  AtLatcal 39250  PSubSpcpsubsp 39483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-covers 39252  df-ats 39253  df-atl 39284  df-psubsp 39490
This theorem is referenced by:  pointpsubN  39738  pclfinN  39887  pclfinclN  39937
  Copyright terms: Public domain W3C validator