Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snatpsubN Structured version   Visualization version   GIF version

Theorem snatpsubN 36956
Description: The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
snpsub.a 𝐴 = (Atoms‘𝐾)
snpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
snatpsubN ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ∈ 𝑆)

Proof of Theorem snatpsubN
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 4725 . . . . . 6 (𝑃𝐴 → {𝑃} ⊆ 𝐴)
21adantl 485 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ⊆ 𝐴)
3 atllat 36506 . . . . . . . . . . . . . . 15 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
4 eqid 2824 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
5 snpsub.a . . . . . . . . . . . . . . . 16 𝐴 = (Atoms‘𝐾)
64, 5atbase 36495 . . . . . . . . . . . . . . 15 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
7 eqid 2824 . . . . . . . . . . . . . . . 16 (join‘𝐾) = (join‘𝐾)
84, 7latjidm 17680 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃(join‘𝐾)𝑃) = 𝑃)
93, 6, 8syl2an 598 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
109adantr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1110breq2d 5064 . . . . . . . . . . . 12 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃) ↔ 𝑟(le‘𝐾)𝑃))
12 eqid 2824 . . . . . . . . . . . . . . . 16 (le‘𝐾) = (le‘𝐾)
1312, 5atcmp 36517 . . . . . . . . . . . . . . 15 ((𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
14133com23 1123 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
15143expa 1115 . . . . . . . . . . . . 13 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
1615biimpd 232 . . . . . . . . . . . 12 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
1711, 16sylbid 243 . . . . . . . . . . 11 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃) → 𝑟 = 𝑃))
1817adantld 494 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)) → 𝑟 = 𝑃))
19 velsn 4565 . . . . . . . . . . . . 13 (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃)
20 velsn 4565 . . . . . . . . . . . . 13 (𝑞 ∈ {𝑃} ↔ 𝑞 = 𝑃)
2119, 20anbi12i 629 . . . . . . . . . . . 12 ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ↔ (𝑝 = 𝑃𝑞 = 𝑃))
2221anbi1i 626 . . . . . . . . . . 11 (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)))
23 oveq12 7154 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑞 = 𝑃) → (𝑝(join‘𝐾)𝑞) = (𝑃(join‘𝐾)𝑃))
2423breq2d 5064 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑞 = 𝑃) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ↔ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
2524pm5.32i 578 . . . . . . . . . . 11 (((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
2622, 25bitri 278 . . . . . . . . . 10 (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
27 velsn 4565 . . . . . . . . . 10 (𝑟 ∈ {𝑃} ↔ 𝑟 = 𝑃)
2818, 26, 273imtr4g 299 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) → 𝑟 ∈ {𝑃}))
2928exp4b 434 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (𝑟𝐴 → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3029com23 86 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3130ralrimdv 3183 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃})))
3231ralrimivv 3185 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))
332, 32jca 515 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃})))
3433ex 416 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 → ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
35 snpsub.s . . . 4 𝑆 = (PSubSp‘𝐾)
3612, 7, 5, 35ispsubsp 36951 . . 3 (𝐾 ∈ AtLat → ({𝑃} ∈ 𝑆 ↔ ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3734, 36sylibrd 262 . 2 (𝐾 ∈ AtLat → (𝑃𝐴 → {𝑃} ∈ 𝑆))
3837imp 410 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  wss 3919  {csn 4549   class class class wbr 5052  cfv 6343  (class class class)co 7145  Basecbs 16479  lecple 16568  joincjn 17550  Latclat 17651  Atomscatm 36469  AtLatcal 36470  PSubSpcpsubsp 36702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-lat 17652  df-covers 36472  df-ats 36473  df-atl 36504  df-psubsp 36709
This theorem is referenced by:  pointpsubN  36957  pclfinN  37106  pclfinclN  37156
  Copyright terms: Public domain W3C validator