Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snatpsubN Structured version   Visualization version   GIF version

Theorem snatpsubN 39739
Description: The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
snpsub.a 𝐴 = (Atoms‘𝐾)
snpsub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
snatpsubN ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ∈ 𝑆)

Proof of Theorem snatpsubN
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 4759 . . . . . 6 (𝑃𝐴 → {𝑃} ⊆ 𝐴)
21adantl 481 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ⊆ 𝐴)
3 atllat 39289 . . . . . . . . . . . . . . 15 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
4 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
5 snpsub.a . . . . . . . . . . . . . . . 16 𝐴 = (Atoms‘𝐾)
64, 5atbase 39278 . . . . . . . . . . . . . . 15 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
7 eqid 2729 . . . . . . . . . . . . . . . 16 (join‘𝐾) = (join‘𝐾)
84, 7latjidm 18368 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃(join‘𝐾)𝑃) = 𝑃)
93, 6, 8syl2an 596 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
109adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑃(join‘𝐾)𝑃) = 𝑃)
1110breq2d 5104 . . . . . . . . . . . 12 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃) ↔ 𝑟(le‘𝐾)𝑃))
12 eqid 2729 . . . . . . . . . . . . . . . 16 (le‘𝐾) = (le‘𝐾)
1312, 5atcmp 39300 . . . . . . . . . . . . . . 15 ((𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
14133com23 1126 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
15143expa 1118 . . . . . . . . . . . . 13 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
1615biimpd 229 . . . . . . . . . . . 12 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
1711, 16sylbid 240 . . . . . . . . . . 11 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃) → 𝑟 = 𝑃))
1817adantld 490 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)) → 𝑟 = 𝑃))
19 velsn 4593 . . . . . . . . . . . . 13 (𝑝 ∈ {𝑃} ↔ 𝑝 = 𝑃)
20 velsn 4593 . . . . . . . . . . . . 13 (𝑞 ∈ {𝑃} ↔ 𝑞 = 𝑃)
2119, 20anbi12i 628 . . . . . . . . . . . 12 ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ↔ (𝑝 = 𝑃𝑞 = 𝑃))
2221anbi1i 624 . . . . . . . . . . 11 (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)))
23 oveq12 7358 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑞 = 𝑃) → (𝑝(join‘𝐾)𝑞) = (𝑃(join‘𝐾)𝑃))
2423breq2d 5104 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑞 = 𝑃) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) ↔ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
2524pm5.32i 574 . . . . . . . . . . 11 (((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
2622, 25bitri 275 . . . . . . . . . 10 (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) ↔ ((𝑝 = 𝑃𝑞 = 𝑃) ∧ 𝑟(le‘𝐾)(𝑃(join‘𝐾)𝑃)))
27 velsn 4593 . . . . . . . . . 10 (𝑟 ∈ {𝑃} ↔ 𝑟 = 𝑃)
2818, 26, 273imtr4g 296 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴) ∧ 𝑟𝐴) → (((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) → 𝑟 ∈ {𝑃}))
2928exp4b 430 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (𝑟𝐴 → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3029com23 86 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3130ralrimdv 3127 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ((𝑝 ∈ {𝑃} ∧ 𝑞 ∈ {𝑃}) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃})))
3231ralrimivv 3170 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))
332, 32jca 511 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃})))
3433ex 412 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 → ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
35 snpsub.s . . . 4 𝑆 = (PSubSp‘𝐾)
3612, 7, 5, 35ispsubsp 39734 . . 3 (𝐾 ∈ AtLat → ({𝑃} ∈ 𝑆 ↔ ({𝑃} ⊆ 𝐴 ∧ ∀𝑝 ∈ {𝑃}∀𝑞 ∈ {𝑃}∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ {𝑃}))))
3734, 36sylibrd 259 . 2 (𝐾 ∈ AtLat → (𝑃𝐴 → {𝑃} ∈ 𝑆))
3837imp 406 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → {𝑃} ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  {csn 4577   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39252  AtLatcal 39253  PSubSpcpsubsp 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-covers 39255  df-ats 39256  df-atl 39287  df-psubsp 39492
This theorem is referenced by:  pointpsubN  39740  pclfinN  39889  pclfinclN  39939
  Copyright terms: Public domain W3C validator