Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvllat Structured version   Visualization version   GIF version

Theorem cvllat 39274
Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
cvllat (𝐾 ∈ CvLat → 𝐾 ∈ Lat)

Proof of Theorem cvllat
StepHypRef Expression
1 cvlatl 39273 . 2 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2 atllat 39248 . 2 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Latclat 18495  AtLatcal 39212  CvLatclc 39213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5705  df-iota 6520  df-fv 6576  df-ov 7446  df-atl 39246  df-cvlat 39270
This theorem is referenced by:  cvlposN  39275  cvlexch2  39277  cvlexchb1  39278  cvlexchb2  39279  cvlatexchb2  39283  cvlatexch1  39284  cvlatexch2  39285  cvlatexch3  39286  cvlcvr1  39287  cvlcvrp  39288  cvlatcvr2  39290  cvlsupr2  39291  cvlsupr7  39296  cvlsupr8  39297
  Copyright terms: Public domain W3C validator