| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvllat | Structured version Visualization version GIF version | ||
| Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvllat | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlatl 39444 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 2 | atllat 39419 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Latclat 18339 AtLatcal 39383 CvLatclc 39384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-dm 5629 df-iota 6442 df-fv 6494 df-ov 7355 df-atl 39417 df-cvlat 39441 |
| This theorem is referenced by: cvlposN 39446 cvlexch2 39448 cvlexchb1 39449 cvlexchb2 39450 cvlatexchb2 39454 cvlatexch1 39455 cvlatexch2 39456 cvlatexch3 39457 cvlcvr1 39458 cvlcvrp 39459 cvlatcvr2 39461 cvlsupr2 39462 cvlsupr7 39467 cvlsupr8 39468 |
| Copyright terms: Public domain | W3C validator |