Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvllat Structured version   Visualization version   GIF version

Theorem cvllat 38830
Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
cvllat (𝐾 ∈ CvLat → 𝐾 ∈ Lat)

Proof of Theorem cvllat
StepHypRef Expression
1 cvlatl 38829 . 2 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2 atllat 38804 . 2 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Latclat 18430  AtLatcal 38768  CvLatclc 38769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-dm 5692  df-iota 6505  df-fv 6561  df-ov 7429  df-atl 38802  df-cvlat 38826
This theorem is referenced by:  cvlposN  38831  cvlexch2  38833  cvlexchb1  38834  cvlexchb2  38835  cvlatexchb2  38839  cvlatexch1  38840  cvlatexch2  38841  cvlatexch3  38842  cvlcvr1  38843  cvlcvrp  38844  cvlatcvr2  38846  cvlsupr2  38847  cvlsupr7  38852  cvlsupr8  38853
  Copyright terms: Public domain W3C validator