| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvllat | Structured version Visualization version GIF version | ||
| Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvllat | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlatl 39363 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 2 | atllat 39338 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Latclat 18334 AtLatcal 39302 CvLatclc 39303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-ov 7349 df-atl 39336 df-cvlat 39360 |
| This theorem is referenced by: cvlposN 39365 cvlexch2 39367 cvlexchb1 39368 cvlexchb2 39369 cvlatexchb2 39373 cvlatexch1 39374 cvlatexch2 39375 cvlatexch3 39376 cvlcvr1 39377 cvlcvrp 39378 cvlatcvr2 39380 cvlsupr2 39381 cvlsupr7 39386 cvlsupr8 39387 |
| Copyright terms: Public domain | W3C validator |