| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvllat | Structured version Visualization version GIF version | ||
| Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvllat | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlatl 39301 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 2 | atllat 39276 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Latclat 18446 AtLatcal 39240 CvLatclc 39241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-dm 5675 df-iota 6494 df-fv 6549 df-ov 7416 df-atl 39274 df-cvlat 39298 |
| This theorem is referenced by: cvlposN 39303 cvlexch2 39305 cvlexchb1 39306 cvlexchb2 39307 cvlatexchb2 39311 cvlatexch1 39312 cvlatexch2 39313 cvlatexch3 39314 cvlcvr1 39315 cvlcvrp 39316 cvlatcvr2 39318 cvlsupr2 39319 cvlsupr7 39324 cvlsupr8 39325 |
| Copyright terms: Public domain | W3C validator |