![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvllat | Structured version Visualization version GIF version |
Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvllat | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlatl 35127 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
2 | atllat 35102 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 Latclat 17246 AtLatcal 35066 CvLatclc 35067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-dm 5259 df-iota 5992 df-fv 6037 df-ov 6794 df-atl 35100 df-cvlat 35124 |
This theorem is referenced by: cvlposN 35129 cvlexch2 35131 cvlexchb1 35132 cvlexchb2 35133 cvlatexchb2 35137 cvlatexch1 35138 cvlatexch2 35139 cvlatexch3 35140 cvlcvr1 35141 cvlcvrp 35142 cvlatcvr2 35144 cvlsupr2 35145 cvlsupr7 35150 cvlsupr8 35151 |
Copyright terms: Public domain | W3C validator |