![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvllat | Structured version Visualization version GIF version |
Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvllat | ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlatl 38829 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
2 | atllat 38804 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Latclat 18430 AtLatcal 38768 CvLatclc 38769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-dm 5692 df-iota 6505 df-fv 6561 df-ov 7429 df-atl 38802 df-cvlat 38826 |
This theorem is referenced by: cvlposN 38831 cvlexch2 38833 cvlexchb1 38834 cvlexchb2 38835 cvlatexchb2 38839 cvlatexch1 38840 cvlatexch2 38841 cvlatexch3 38842 cvlcvr1 38843 cvlcvrp 38844 cvlatcvr2 38846 cvlsupr2 38847 cvlsupr7 38852 cvlsupr8 38853 |
Copyright terms: Public domain | W3C validator |