Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvllat Structured version   Visualization version   GIF version

Theorem cvllat 39445
Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
cvllat (𝐾 ∈ CvLat → 𝐾 ∈ Lat)

Proof of Theorem cvllat
StepHypRef Expression
1 cvlatl 39444 . 2 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2 atllat 39419 . 2 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Latclat 18339  AtLatcal 39383  CvLatclc 39384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-dm 5629  df-iota 6442  df-fv 6494  df-ov 7355  df-atl 39417  df-cvlat 39441
This theorem is referenced by:  cvlposN  39446  cvlexch2  39448  cvlexchb1  39449  cvlexchb2  39450  cvlatexchb2  39454  cvlatexch1  39455  cvlatexch2  39456  cvlatexch3  39457  cvlcvr1  39458  cvlcvrp  39459  cvlatcvr2  39461  cvlsupr2  39462  cvlsupr7  39467  cvlsupr8  39468
  Copyright terms: Public domain W3C validator