Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvllat Structured version   Visualization version   GIF version

Theorem cvllat 35128
Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
cvllat (𝐾 ∈ CvLat → 𝐾 ∈ Lat)

Proof of Theorem cvllat
StepHypRef Expression
1 cvlatl 35127 . 2 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2 atllat 35102 . 2 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145  Latclat 17246  AtLatcal 35066  CvLatclc 35067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-dm 5259  df-iota 5992  df-fv 6037  df-ov 6794  df-atl 35100  df-cvlat 35124
This theorem is referenced by:  cvlposN  35129  cvlexch2  35131  cvlexchb1  35132  cvlexchb2  35133  cvlatexchb2  35137  cvlatexch1  35138  cvlatexch2  35139  cvlatexch3  35140  cvlcvr1  35141  cvlcvrp  35142  cvlatcvr2  35144  cvlsupr2  35145  cvlsupr7  35150  cvlsupr8  35151
  Copyright terms: Public domain W3C validator