Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatmstc Structured version   Visualization version   GIF version

Theorem atlatmstc 36615
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 30145 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatmstc.b 𝐵 = (Base‘𝐾)
atlatmstc.l = (le‘𝐾)
atlatmstc.u 1 = (lub‘𝐾)
atlatmstc.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlatmstc (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋
Allowed substitution hints:   1 (𝑦)   𝐾(𝑦)

Proof of Theorem atlatmstc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ CLat)
2 ssrab2 4007 . . . . 5 {𝑦𝐵𝑦 𝑋} ⊆ 𝐵
3 atlatmstc.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 atlatmstc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4atssbase 36586 . . . . . 6 𝐴𝐵
6 rabss2 4005 . . . . . 6 (𝐴𝐵 → {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋})
75, 6ax-mp 5 . . . . 5 {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋}
8 atlatmstc.l . . . . . 6 = (le‘𝐾)
9 atlatmstc.u . . . . . 6 1 = (lub‘𝐾)
103, 8, 9lubss 17723 . . . . 5 ((𝐾 ∈ CLat ∧ {𝑦𝐵𝑦 𝑋} ⊆ 𝐵 ∧ {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋}) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
112, 7, 10mp3an23 1450 . . . 4 (𝐾 ∈ CLat → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
121, 11syl 17 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
13 atlpos 36597 . . . . 5 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
14133ad2ant3 1132 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) → 𝐾 ∈ Poset)
15 simpl 486 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
16 simpr 488 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋𝐵)
173, 8, 9, 15, 16lubid 17592 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
1814, 17sylan 583 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
1912, 18breqtrd 5056 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋)
20 breq1 5033 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 𝑋𝑥 𝑋))
2120elrab 3628 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐴𝑦 𝑋} ↔ (𝑥𝐴𝑥 𝑋))
22 simpll2 1210 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝐾 ∈ CLat)
23 ssrab2 4007 . . . . . . . . . . . . 13 {𝑦𝐴𝑦 𝑋} ⊆ 𝐴
2423, 5sstri 3924 . . . . . . . . . . . 12 {𝑦𝐴𝑦 𝑋} ⊆ 𝐵
253, 8, 9lubel 17724 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋} ∧ {𝑦𝐴𝑦 𝑋} ⊆ 𝐵) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2624, 25mp3an3 1447 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2722, 26sylancom 591 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2827ex 416 . . . . . . . . 9 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑥 ∈ {𝑦𝐴𝑦 𝑋} → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
2921, 28syl5bir 246 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((𝑥𝐴𝑥 𝑋) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
3029expdimp 456 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 𝑋𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
31 simpll3 1211 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝐾 ∈ AtLat)
32 eqid 2798 . . . . . . . . . . . 12 (0.‘𝐾) = (0.‘𝐾)
3332, 4atn0 36604 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑥𝐴) → 𝑥 ≠ (0.‘𝐾))
3431, 33sylancom 591 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑥 ≠ (0.‘𝐾))
3534adantr 484 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → 𝑥 ≠ (0.‘𝐾))
36 simpl3 1190 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
37 atllat 36596 . . . . . . . . . . . . . . . 16 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
3836, 37syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3938adantr 484 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝐾 ∈ Lat)
403, 4atbase 36585 . . . . . . . . . . . . . . 15 (𝑥𝐴𝑥𝐵)
4140adantl 485 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
423, 9clatlubcl 17714 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ CLat ∧ {𝑦𝐴𝑦 𝑋} ⊆ 𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
431, 24, 42sylancl 589 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
4443adantr 484 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
45 simpl1 1188 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ OML)
46 omlop 36537 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ OML → 𝐾 ∈ OP)
4745, 46syl 17 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ OP)
48 eqid 2798 . . . . . . . . . . . . . . . . 17 (oc‘𝐾) = (oc‘𝐾)
493, 48opoccl 36490 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
5047, 43, 49syl2anc 587 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
5150adantr 484 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
52 eqid 2798 . . . . . . . . . . . . . . 15 (meet‘𝐾) = (meet‘𝐾)
533, 8, 52latlem12 17680 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑥𝐵 ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
5439, 41, 44, 51, 53syl13anc 1369 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
553, 48, 52, 32opnoncon 36504 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵) → (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
5647, 43, 55syl2anc 587 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
5756breq2d 5042 . . . . . . . . . . . . . 14 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (0.‘𝐾)))
5857adantr 484 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (0.‘𝐾)))
593, 8, 32ople0 36483 . . . . . . . . . . . . . 14 ((𝐾 ∈ OP ∧ 𝑥𝐵) → (𝑥 (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾)))
6047, 40, 59syl2an 598 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾)))
6154, 58, 603bitrd 308 . . . . . . . . . . . 12 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 = (0.‘𝐾)))
6261biimpa 480 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ (𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))) → 𝑥 = (0.‘𝐾))
6362expr 460 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → (𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) → 𝑥 = (0.‘𝐾)))
6463necon3ad 3000 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → (𝑥 ≠ (0.‘𝐾) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6535, 64mpd 15 . . . . . . . 8 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))
6665ex 416 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6730, 66syld 47 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 𝑋 → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
68 imnan 403 . . . . . 6 ((𝑥 𝑋 → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ ¬ (𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6967, 68sylib 221 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ¬ (𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
70 simplr 768 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑋𝐵)
713, 8, 52latlem12 17680 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑋𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)) → ((𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
7239, 41, 70, 51, 71syl13anc 1369 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
7369, 72mtbid 327 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ¬ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
7473nrexdv 3229 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ¬ ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
75 simpll3 1211 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → 𝐾 ∈ AtLat)
76 simpr 488 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝑋𝐵)
773, 52latmcl 17654 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
7838, 76, 50, 77syl3anc 1368 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
7978adantr 484 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
80 simpr 488 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾))
813, 8, 32, 4atlex 36612 . . . . . 6 ((𝐾 ∈ AtLat ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
8275, 79, 80, 81syl3anc 1368 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
8382ex 416 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
8483necon1bd 3005 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (¬ ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)))
8574, 84mpd 15 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
863, 8, 52, 48, 32omllaw3 36541 . . 3 ((𝐾 ∈ OML ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵𝑋𝐵) → ((( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋))
8745, 43, 76, 86syl3anc 1368 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋))
8819, 85, 87mp2and 698 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {crab 3110  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  occoc 16565  Posetcpo 17542  lubclub 17544  meetcmee 17547  0.cp0 17639  Latclat 17647  CLatccla 17709  OPcops 36468  OMLcoml 36471  Atomscatm 36559  AtLatcal 36560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594
This theorem is referenced by:  atlatle  36616  hlatmstcOLDN  36693  pmaple  37057  pol1N  37206  polpmapN  37208  pmaplubN  37220
  Copyright terms: Public domain W3C validator