Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatmstc Structured version   Visualization version   GIF version

Theorem atlatmstc 37260
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 30625 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatmstc.b 𝐵 = (Base‘𝐾)
atlatmstc.l = (le‘𝐾)
atlatmstc.u 1 = (lub‘𝐾)
atlatmstc.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlatmstc (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋
Allowed substitution hints:   1 (𝑦)   𝐾(𝑦)

Proof of Theorem atlatmstc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1190 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ CLat)
2 ssrab2 4009 . . . . 5 {𝑦𝐵𝑦 𝑋} ⊆ 𝐵
3 atlatmstc.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 atlatmstc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4atssbase 37231 . . . . . 6 𝐴𝐵
6 rabss2 4007 . . . . . 6 (𝐴𝐵 → {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋})
75, 6ax-mp 5 . . . . 5 {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋}
8 atlatmstc.l . . . . . 6 = (le‘𝐾)
9 atlatmstc.u . . . . . 6 1 = (lub‘𝐾)
103, 8, 9lubss 18146 . . . . 5 ((𝐾 ∈ CLat ∧ {𝑦𝐵𝑦 𝑋} ⊆ 𝐵 ∧ {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋}) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
112, 7, 10mp3an23 1451 . . . 4 (𝐾 ∈ CLat → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
121, 11syl 17 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
13 atlpos 37242 . . . . 5 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
14133ad2ant3 1133 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) → 𝐾 ∈ Poset)
15 simpl 482 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
16 simpr 484 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋𝐵)
173, 8, 9, 15, 16lubid 17995 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
1814, 17sylan 579 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
1912, 18breqtrd 5096 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋)
20 breq1 5073 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 𝑋𝑥 𝑋))
2120elrab 3617 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐴𝑦 𝑋} ↔ (𝑥𝐴𝑥 𝑋))
22 simpll2 1211 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝐾 ∈ CLat)
23 ssrab2 4009 . . . . . . . . . . . . 13 {𝑦𝐴𝑦 𝑋} ⊆ 𝐴
2423, 5sstri 3926 . . . . . . . . . . . 12 {𝑦𝐴𝑦 𝑋} ⊆ 𝐵
253, 8, 9lubel 18147 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋} ∧ {𝑦𝐴𝑦 𝑋} ⊆ 𝐵) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2624, 25mp3an3 1448 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2722, 26sylancom 587 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2827ex 412 . . . . . . . . 9 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑥 ∈ {𝑦𝐴𝑦 𝑋} → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
2921, 28syl5bir 242 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((𝑥𝐴𝑥 𝑋) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
3029expdimp 452 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 𝑋𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
31 simpll3 1212 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝐾 ∈ AtLat)
32 eqid 2738 . . . . . . . . . . . 12 (0.‘𝐾) = (0.‘𝐾)
3332, 4atn0 37249 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑥𝐴) → 𝑥 ≠ (0.‘𝐾))
3431, 33sylancom 587 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑥 ≠ (0.‘𝐾))
3534adantr 480 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → 𝑥 ≠ (0.‘𝐾))
36 simpl3 1191 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
37 atllat 37241 . . . . . . . . . . . . . . . 16 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
3836, 37syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3938adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝐾 ∈ Lat)
403, 4atbase 37230 . . . . . . . . . . . . . . 15 (𝑥𝐴𝑥𝐵)
4140adantl 481 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
423, 9clatlubcl 18136 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ CLat ∧ {𝑦𝐴𝑦 𝑋} ⊆ 𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
431, 24, 42sylancl 585 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
4443adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
45 simpl1 1189 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ OML)
46 omlop 37182 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ OML → 𝐾 ∈ OP)
4745, 46syl 17 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ OP)
48 eqid 2738 . . . . . . . . . . . . . . . . 17 (oc‘𝐾) = (oc‘𝐾)
493, 48opoccl 37135 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
5047, 43, 49syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
5150adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
52 eqid 2738 . . . . . . . . . . . . . . 15 (meet‘𝐾) = (meet‘𝐾)
533, 8, 52latlem12 18099 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑥𝐵 ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
5439, 41, 44, 51, 53syl13anc 1370 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
553, 48, 52, 32opnoncon 37149 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵) → (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
5647, 43, 55syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
5756breq2d 5082 . . . . . . . . . . . . . 14 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (0.‘𝐾)))
5857adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (0.‘𝐾)))
593, 8, 32ople0 37128 . . . . . . . . . . . . . 14 ((𝐾 ∈ OP ∧ 𝑥𝐵) → (𝑥 (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾)))
6047, 40, 59syl2an 595 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾)))
6154, 58, 603bitrd 304 . . . . . . . . . . . 12 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 = (0.‘𝐾)))
6261biimpa 476 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ (𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))) → 𝑥 = (0.‘𝐾))
6362expr 456 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → (𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) → 𝑥 = (0.‘𝐾)))
6463necon3ad 2955 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → (𝑥 ≠ (0.‘𝐾) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6535, 64mpd 15 . . . . . . . 8 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))
6665ex 412 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6730, 66syld 47 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 𝑋 → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
68 imnan 399 . . . . . 6 ((𝑥 𝑋 → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ ¬ (𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6967, 68sylib 217 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ¬ (𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
70 simplr 765 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑋𝐵)
713, 8, 52latlem12 18099 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑋𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)) → ((𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
7239, 41, 70, 51, 71syl13anc 1370 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
7369, 72mtbid 323 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ¬ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
7473nrexdv 3197 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ¬ ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
75 simpll3 1212 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → 𝐾 ∈ AtLat)
76 simpr 484 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝑋𝐵)
773, 52latmcl 18073 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
7838, 76, 50, 77syl3anc 1369 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
7978adantr 480 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
80 simpr 484 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾))
813, 8, 32, 4atlex 37257 . . . . . 6 ((𝐾 ∈ AtLat ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
8275, 79, 80, 81syl3anc 1369 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
8382ex 412 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
8483necon1bd 2960 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (¬ ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)))
8574, 84mpd 15 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
863, 8, 52, 48, 32omllaw3 37186 . . 3 ((𝐾 ∈ OML ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵𝑋𝐵) → ((( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋))
8745, 43, 76, 86syl3anc 1369 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋))
8819, 85, 87mp2and 695 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  occoc 16896  Posetcpo 17940  lubclub 17942  meetcmee 17945  0.cp0 18056  Latclat 18064  CLatccla 18131  OPcops 37113  OMLcoml 37116  Atomscatm 37204  AtLatcal 37205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239
This theorem is referenced by:  atlatle  37261  hlatmstcOLDN  37338  pmaple  37702  pol1N  37851  polpmapN  37853  pmaplubN  37865
  Copyright terms: Public domain W3C validator