Step | Hyp | Ref
| Expression |
1 | | simpl2 1191 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ CLat) |
2 | | ssrab2 4013 |
. . . . 5
⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 |
3 | | atlatmstc.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
4 | | atlatmstc.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
5 | 3, 4 | atssbase 37304 |
. . . . . 6
⊢ 𝐴 ⊆ 𝐵 |
6 | | rabss2 4011 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) |
7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} |
8 | | atlatmstc.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
9 | | atlatmstc.u |
. . . . . 6
⊢ 1 =
(lub‘𝐾) |
10 | 3, 8, 9 | lubss 18231 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 ∧ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋})) |
11 | 2, 7, 10 | mp3an23 1452 |
. . . 4
⊢ (𝐾 ∈ CLat → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋})) |
12 | 1, 11 | syl 17 |
. . 3
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋})) |
13 | | atlpos 37315 |
. . . . 5
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) |
14 | 13 | 3ad2ant3 1134 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) → 𝐾 ∈ Poset) |
15 | | simpl 483 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) |
16 | | simpr 485 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
17 | 3, 8, 9, 15, 16 | lubid 18080 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |
18 | 14, 17 | sylan 580 |
. . 3
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |
19 | 12, 18 | breqtrd 5100 |
. 2
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ 𝑋) |
20 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 ≤ 𝑋 ↔ 𝑥 ≤ 𝑋)) |
21 | 20 | elrab 3624 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋)) |
22 | | simpll2 1212 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) → 𝐾 ∈ CLat) |
23 | | ssrab2 4013 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐴 |
24 | 23, 5 | sstri 3930 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 |
25 | 3, 8, 9 | lubel 18232 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ∧ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵) → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) |
26 | 24, 25 | mp3an3 1449 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) |
27 | 22, 26 | sylancom 588 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) |
28 | 27 | ex 413 |
. . . . . . . . 9
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) |
29 | 21, 28 | syl5bir 242 |
. . . . . . . 8
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋) → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) |
30 | 29 | expdimp 453 |
. . . . . . 7
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ 𝑋 → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) |
31 | | simpll3 1213 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐾 ∈ AtLat) |
32 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0.‘𝐾) =
(0.‘𝐾) |
33 | 32, 4 | atn0 37322 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ AtLat ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ (0.‘𝐾)) |
34 | 31, 33 | sylancom 588 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ (0.‘𝐾)) |
35 | 34 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → 𝑥 ≠ (0.‘𝐾)) |
36 | | simpl3 1192 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) |
37 | | atllat 37314 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
39 | 38 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐾 ∈ Lat) |
40 | 3, 4 | atbase 37303 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
41 | 40 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
42 | 3, 9 | clatlubcl 18221 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) |
43 | 1, 24, 42 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) |
45 | | simpl1 1190 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OML) |
46 | | omlop 37255 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
48 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(oc‘𝐾) =
(oc‘𝐾) |
49 | 3, 48 | opoccl 37208 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵) |
50 | 47, 43, 49 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵) |
51 | 50 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵) |
52 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(meet‘𝐾) =
(meet‘𝐾) |
53 | 3, 8, 52 | latlem12 18184 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵)) → ((𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
54 | 39, 41, 44, 51, 53 | syl13anc 1371 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
55 | 3, 48, 52, 32 | opnoncon 37222 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) → (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) |
56 | 47, 43, 55 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) |
57 | 56 | breq2d 5086 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑥 ≤ (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (0.‘𝐾))) |
58 | 57 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (0.‘𝐾))) |
59 | 3, 8, 32 | ople0 37201 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → (𝑥 ≤ (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾))) |
60 | 47, 40, 59 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾))) |
61 | 54, 58, 60 | 3bitrd 305 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 = (0.‘𝐾))) |
62 | 61 | biimpa 477 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) → 𝑥 = (0.‘𝐾)) |
63 | 62 | expr 457 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → (𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → 𝑥 = (0.‘𝐾))) |
64 | 63 | necon3ad 2956 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → (𝑥 ≠ (0.‘𝐾) → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
65 | 35, 64 | mpd 15 |
. . . . . . . 8
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) |
66 | 65 | ex 413 |
. . . . . . 7
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
67 | 30, 66 | syld 47 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
68 | | imnan 400 |
. . . . . 6
⊢ ((𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ ¬ (𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
69 | 67, 68 | sylib 217 |
. . . . 5
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ¬ (𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
70 | | simplr 766 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
71 | 3, 8, 52 | latlem12 18184 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵)) → ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
72 | 39, 41, 70, 51, 71 | syl13anc 1371 |
. . . . 5
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
73 | 69, 72 | mtbid 324 |
. . . 4
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
74 | 73 | nrexdv 3198 |
. . 3
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ¬ ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
75 | | simpll3 1213 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → 𝐾 ∈ AtLat) |
76 | | simpr 485 |
. . . . . . . 8
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
77 | 3, 52 | latmcl 18158 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ∈ 𝐵) |
78 | 38, 76, 50, 77 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ∈ 𝐵) |
79 | 78 | adantr 481 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ∈ 𝐵) |
80 | | simpr 485 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) |
81 | 3, 8, 32, 4 | atlex 37330 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
82 | 75, 79, 80, 81 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
83 | 82 | ex 413 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾) → ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
84 | 83 | necon1bd 2961 |
. . 3
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (¬ ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾))) |
85 | 74, 84 | mpd 15 |
. 2
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) |
86 | 3, 8, 52, 48, 32 | omllaw3 37259 |
. . 3
⊢ ((𝐾 ∈ OML ∧ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋)) |
87 | 45, 43, 76, 86 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋)) |
88 | 19, 85, 87 | mp2and 696 |
1
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |