| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1192 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ CLat) |
| 2 | | ssrab2 4062 |
. . . . 5
⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 |
| 3 | | atlatmstc.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 4 | | atlatmstc.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | 3, 4 | atssbase 39232 |
. . . . . 6
⊢ 𝐴 ⊆ 𝐵 |
| 6 | | rabss2 4060 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) |
| 7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} |
| 8 | | atlatmstc.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 9 | | atlatmstc.u |
. . . . . 6
⊢ 1 =
(lub‘𝐾) |
| 10 | 3, 8, 9 | lubss 18532 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 ∧ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋})) |
| 11 | 2, 7, 10 | mp3an23 1454 |
. . . 4
⊢ (𝐾 ∈ CLat → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋})) |
| 12 | 1, 11 | syl 17 |
. . 3
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋})) |
| 13 | | atlpos 39243 |
. . . . 5
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) |
| 14 | 13 | 3ad2ant3 1135 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) → 𝐾 ∈ Poset) |
| 15 | | simpl 482 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 16 | | simpr 484 |
. . . . 5
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 17 | 3, 8, 9, 15, 16 | lubid 18381 |
. . . 4
⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |
| 18 | 14, 17 | sylan 580 |
. . 3
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |
| 19 | 12, 18 | breqtrd 5151 |
. 2
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ 𝑋) |
| 20 | | breq1 5128 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑦 ≤ 𝑋 ↔ 𝑥 ≤ 𝑋)) |
| 21 | 20 | elrab 3676 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋)) |
| 22 | | simpll2 1213 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) → 𝐾 ∈ CLat) |
| 23 | | ssrab2 4062 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐴 |
| 24 | 23, 5 | sstri 3975 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 |
| 25 | 3, 8, 9 | lubel 18533 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ∧ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵) → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) |
| 26 | 24, 25 | mp3an3 1451 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) |
| 27 | 22, 26 | sylancom 588 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) |
| 28 | 27 | ex 412 |
. . . . . . . . 9
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) |
| 29 | 21, 28 | biimtrrid 243 |
. . . . . . . 8
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋) → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) |
| 30 | 29 | expdimp 452 |
. . . . . . 7
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ 𝑋 → 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) |
| 31 | | simpll3 1214 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 32 | | eqid 2734 |
. . . . . . . . . . . 12
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 33 | 32, 4 | atn0 39250 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ AtLat ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ (0.‘𝐾)) |
| 34 | 31, 33 | sylancom 588 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ (0.‘𝐾)) |
| 35 | 34 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → 𝑥 ≠ (0.‘𝐾)) |
| 36 | | simpl3 1193 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) |
| 37 | | atllat 39242 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 39 | 38 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐾 ∈ Lat) |
| 40 | 3, 4 | atbase 39231 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 42 | 3, 9 | clatlubcl 18522 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) |
| 43 | 1, 24, 42 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) |
| 45 | | simpl1 1191 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OML) |
| 46 | | omlop 39183 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 48 | | eqid 2734 |
. . . . . . . . . . . . . . . . 17
⊢
(oc‘𝐾) =
(oc‘𝐾) |
| 49 | 3, 48 | opoccl 39136 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵) |
| 50 | 47, 43, 49 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵) |
| 52 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 53 | 3, 8, 52 | latlem12 18485 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵)) → ((𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
| 54 | 39, 41, 44, 51, 53 | syl13anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
| 55 | 3, 48, 52, 32 | opnoncon 39150 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵) → (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) |
| 56 | 47, 43, 55 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) |
| 57 | 56 | breq2d 5137 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑥 ≤ (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (0.‘𝐾))) |
| 58 | 57 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ (( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (0.‘𝐾))) |
| 59 | 3, 8, 32 | ople0 39129 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → (𝑥 ≤ (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾))) |
| 60 | 47, 40, 59 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾))) |
| 61 | 54, 58, 60 | 3bitrd 305 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 = (0.‘𝐾))) |
| 62 | 61 | biimpa 476 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) → 𝑥 = (0.‘𝐾)) |
| 63 | 62 | expr 456 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → (𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → 𝑥 = (0.‘𝐾))) |
| 64 | 63 | necon3ad 2944 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → (𝑥 ≠ (0.‘𝐾) → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 65 | 35, 64 | mpd 15 |
. . . . . . . 8
⊢
(((((𝐾 ∈ OML
∧ 𝐾 ∈ CLat ∧
𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) |
| 66 | 65 | ex 412 |
. . . . . . 7
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 67 | 30, 66 | syld 47 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 68 | | imnan 399 |
. . . . . 6
⊢ ((𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ ¬ (𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 69 | 67, 68 | sylib 218 |
. . . . 5
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ¬ (𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 70 | | simplr 768 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| 71 | 3, 8, 52 | latlem12 18485 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵)) → ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
| 72 | 39, 41, 70, 51, 71 | syl13anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ↔ 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
| 73 | 69, 72 | mtbid 324 |
. . . 4
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 74 | 73 | nrexdv 3136 |
. . 3
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ¬ ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 75 | | simpll3 1214 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → 𝐾 ∈ AtLat) |
| 76 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 77 | 3, 52 | latmcl 18459 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})) ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ∈ 𝐵) |
| 78 | 38, 76, 50, 77 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ∈ 𝐵) |
| 79 | 78 | adantr 480 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ∈ 𝐵) |
| 80 | | simpr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) |
| 81 | 3, 8, 32, 4 | atlex 39258 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 82 | 75, 79, 80, 81 | syl3anc 1372 |
. . . . 5
⊢ ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋})))) |
| 83 | 82 | ex 412 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) ≠ (0.‘𝐾) → ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))))) |
| 84 | 83 | necon1bd 2949 |
. . 3
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (¬ ∃𝑥 ∈ 𝐴 𝑥 ≤ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾))) |
| 85 | 74, 84 | mpd 15 |
. 2
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) |
| 86 | 3, 8, 52, 48, 32 | omllaw3 39187 |
. . 3
⊢ ((𝐾 ∈ OML ∧ ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋)) |
| 87 | 45, 43, 76, 86 | syl3anc 1372 |
. 2
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) ≤ 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋)) |
| 88 | 19, 85, 87 | mp2and 699 |
1
⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋) |