Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatmstc Structured version   Visualization version   GIF version

Theorem atlatmstc 39304
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 32298 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatmstc.b 𝐵 = (Base‘𝐾)
atlatmstc.l = (le‘𝐾)
atlatmstc.u 1 = (lub‘𝐾)
atlatmstc.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlatmstc (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋
Allowed substitution hints:   1 (𝑦)   𝐾(𝑦)

Proof of Theorem atlatmstc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ CLat)
2 ssrab2 4051 . . . . 5 {𝑦𝐵𝑦 𝑋} ⊆ 𝐵
3 atlatmstc.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 atlatmstc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4atssbase 39275 . . . . . 6 𝐴𝐵
6 rabss2 4049 . . . . . 6 (𝐴𝐵 → {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋})
75, 6ax-mp 5 . . . . 5 {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋}
8 atlatmstc.l . . . . . 6 = (le‘𝐾)
9 atlatmstc.u . . . . . 6 1 = (lub‘𝐾)
103, 8, 9lubss 18478 . . . . 5 ((𝐾 ∈ CLat ∧ {𝑦𝐵𝑦 𝑋} ⊆ 𝐵 ∧ {𝑦𝐴𝑦 𝑋} ⊆ {𝑦𝐵𝑦 𝑋}) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
112, 7, 10mp3an23 1455 . . . 4 (𝐾 ∈ CLat → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
121, 11syl 17 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ( 1 ‘{𝑦𝐵𝑦 𝑋}))
13 atlpos 39286 . . . . 5 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
14133ad2ant3 1135 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) → 𝐾 ∈ Poset)
15 simpl 482 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
16 simpr 484 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋𝐵)
173, 8, 9, 15, 16lubid 18327 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
1814, 17sylan 580 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐵𝑦 𝑋}) = 𝑋)
1912, 18breqtrd 5141 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋)
20 breq1 5118 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 𝑋𝑥 𝑋))
2120elrab 3667 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐴𝑦 𝑋} ↔ (𝑥𝐴𝑥 𝑋))
22 simpll2 1214 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝐾 ∈ CLat)
23 ssrab2 4051 . . . . . . . . . . . . 13 {𝑦𝐴𝑦 𝑋} ⊆ 𝐴
2423, 5sstri 3964 . . . . . . . . . . . 12 {𝑦𝐴𝑦 𝑋} ⊆ 𝐵
253, 8, 9lubel 18479 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋} ∧ {𝑦𝐴𝑦 𝑋} ⊆ 𝐵) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2624, 25mp3an3 1452 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2722, 26sylancom 588 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥 ∈ {𝑦𝐴𝑦 𝑋}) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}))
2827ex 412 . . . . . . . . 9 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑥 ∈ {𝑦𝐴𝑦 𝑋} → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
2921, 28biimtrrid 243 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((𝑥𝐴𝑥 𝑋) → 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
3029expdimp 452 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 𝑋𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})))
31 simpll3 1215 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝐾 ∈ AtLat)
32 eqid 2730 . . . . . . . . . . . 12 (0.‘𝐾) = (0.‘𝐾)
3332, 4atn0 39293 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑥𝐴) → 𝑥 ≠ (0.‘𝐾))
3431, 33sylancom 588 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑥 ≠ (0.‘𝐾))
3534adantr 480 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → 𝑥 ≠ (0.‘𝐾))
36 simpl3 1194 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
37 atllat 39285 . . . . . . . . . . . . . . . 16 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
3836, 37syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3938adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝐾 ∈ Lat)
403, 4atbase 39274 . . . . . . . . . . . . . . 15 (𝑥𝐴𝑥𝐵)
4140adantl 481 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
423, 9clatlubcl 18468 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ CLat ∧ {𝑦𝐴𝑦 𝑋} ⊆ 𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
431, 24, 42sylancl 586 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
4443adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵)
45 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ OML)
46 omlop 39226 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ OML → 𝐾 ∈ OP)
4745, 46syl 17 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝐾 ∈ OP)
48 eqid 2730 . . . . . . . . . . . . . . . . 17 (oc‘𝐾) = (oc‘𝐾)
493, 48opoccl 39179 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
5047, 43, 49syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
5150adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)
52 eqid 2730 . . . . . . . . . . . . . . 15 (meet‘𝐾) = (meet‘𝐾)
533, 8, 52latlem12 18431 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑥𝐵 ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
5439, 41, 44, 51, 53syl13anc 1374 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
553, 48, 52, 32opnoncon 39193 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵) → (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
5647, 43, 55syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
5756breq2d 5127 . . . . . . . . . . . . . 14 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (0.‘𝐾)))
5857adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 (( 1 ‘{𝑦𝐴𝑦 𝑋})(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (0.‘𝐾)))
593, 8, 32ople0 39172 . . . . . . . . . . . . . 14 ((𝐾 ∈ OP ∧ 𝑥𝐵) → (𝑥 (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾)))
6047, 40, 59syl2an 596 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 (0.‘𝐾) ↔ 𝑥 = (0.‘𝐾)))
6154, 58, 603bitrd 305 . . . . . . . . . . . 12 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 = (0.‘𝐾)))
6261biimpa 476 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ (𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∧ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))) → 𝑥 = (0.‘𝐾))
6362expr 456 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → (𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) → 𝑥 = (0.‘𝐾)))
6463necon3ad 2940 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → (𝑥 ≠ (0.‘𝐾) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6535, 64mpd 15 . . . . . . . 8 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) ∧ 𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋})) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))
6665ex 412 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 ( 1 ‘{𝑦𝐴𝑦 𝑋}) → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6730, 66syld 47 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → (𝑥 𝑋 → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
68 imnan 399 . . . . . 6 ((𝑥 𝑋 → ¬ 𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ ¬ (𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
6967, 68sylib 218 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ¬ (𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
70 simplr 768 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → 𝑋𝐵)
713, 8, 52latlem12 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑋𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵)) → ((𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
7239, 41, 70, 51, 71syl13anc 1374 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ((𝑥 𝑋𝑥 ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ↔ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
7369, 72mtbid 324 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ 𝑥𝐴) → ¬ 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
7473nrexdv 3130 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ¬ ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
75 simpll3 1215 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → 𝐾 ∈ AtLat)
76 simpr 484 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → 𝑋𝐵)
773, 52latmcl 18405 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})) ∈ 𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
7838, 76, 50, 77syl3anc 1373 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
7978adantr 480 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵)
80 simpr 484 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾))
813, 8, 32, 4atlex 39301 . . . . . 6 ((𝐾 ∈ AtLat ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
8275, 79, 80, 81syl3anc 1373 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾)) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))))
8382ex 412 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) ≠ (0.‘𝐾) → ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋})))))
8483necon1bd 2945 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (¬ ∃𝑥𝐴 𝑥 (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)))
8574, 84mpd 15 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾))
863, 8, 52, 48, 32omllaw3 39230 . . 3 ((𝐾 ∈ OML ∧ ( 1 ‘{𝑦𝐴𝑦 𝑋}) ∈ 𝐵𝑋𝐵) → ((( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋))
8745, 43, 76, 86syl3anc 1373 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((( 1 ‘{𝑦𝐴𝑦 𝑋}) 𝑋 ∧ (𝑋(meet‘𝐾)((oc‘𝐾)‘( 1 ‘{𝑦𝐴𝑦 𝑋}))) = (0.‘𝐾)) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋))
8819, 85, 87mp2and 699 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ( 1 ‘{𝑦𝐴𝑦 𝑋}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927  wrex 3055  {crab 3411  wss 3922   class class class wbr 5115  cfv 6519  (class class class)co 7394  Basecbs 17185  lecple 17233  occoc 17234  Posetcpo 18274  lubclub 18276  meetcmee 18279  0.cp0 18388  Latclat 18396  CLatccla 18463  OPcops 39157  OMLcoml 39160  Atomscatm 39248  AtLatcal 39249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-clat 18464  df-oposet 39161  df-ol 39163  df-oml 39164  df-covers 39251  df-ats 39252  df-atl 39283
This theorem is referenced by:  atlatle  39305  hlatmstcOLDN  39383  pmaple  39747  pol1N  39896  polpmapN  39898  pmaplubN  39910
  Copyright terms: Public domain W3C validator