Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnle Structured version   Visualization version   GIF version

Theorem atnle 39283
Description: Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 32278 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atnle.b 𝐵 = (Base‘𝐾)
atnle.l = (le‘𝐾)
atnle.m = (meet‘𝐾)
atnle.z 0 = (0.‘𝐾)
atnle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnle ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))

Proof of Theorem atnle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → 𝐾 ∈ AtLat)
2 atllat 39266 . . . . . . . . 9 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
323ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝐾 ∈ Lat)
4 atnle.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
5 atnle.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
64, 5atbase 39255 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
763ad2ant2 1134 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑃𝐵)
8 simp3 1138 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑋𝐵)
9 atnle.m . . . . . . . . 9 = (meet‘𝐾)
104, 9latmcl 18375 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
113, 7, 8, 10syl3anc 1373 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
1211adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (𝑃 𝑋) ∈ 𝐵)
13 simpr 484 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (𝑃 𝑋) ≠ 0 )
14 atnle.l . . . . . . 7 = (le‘𝐾)
15 atnle.z . . . . . . 7 0 = (0.‘𝐾)
164, 14, 15, 5atlex 39282 . . . . . 6 ((𝐾 ∈ AtLat ∧ (𝑃 𝑋) ∈ 𝐵 ∧ (𝑃 𝑋) ≠ 0 ) → ∃𝑦𝐴 𝑦 (𝑃 𝑋))
171, 12, 13, 16syl3anc 1373 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → ∃𝑦𝐴 𝑦 (𝑃 𝑋))
18 simpl1 1192 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝐾 ∈ AtLat)
1918, 2syl 17 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝐾 ∈ Lat)
204, 5atbase 39255 . . . . . . . . . 10 (𝑦𝐴𝑦𝐵)
2120adantl 481 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑦𝐵)
22 simpl2 1193 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑃𝐴)
2322, 6syl 17 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑃𝐵)
24 simpl3 1194 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑋𝐵)
254, 14, 9latlem12 18401 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑦𝐵𝑃𝐵𝑋𝐵)) → ((𝑦 𝑃𝑦 𝑋) ↔ 𝑦 (𝑃 𝑋)))
2619, 21, 23, 24, 25syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → ((𝑦 𝑃𝑦 𝑋) ↔ 𝑦 (𝑃 𝑋)))
27 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑦𝐴)
2814, 5atcmp 39277 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑦𝐴𝑃𝐴) → (𝑦 𝑃𝑦 = 𝑃))
2918, 27, 22, 28syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 𝑃𝑦 = 𝑃))
30 breq1 5105 . . . . . . . . . . 11 (𝑦 = 𝑃 → (𝑦 𝑋𝑃 𝑋))
3130biimpd 229 . . . . . . . . . 10 (𝑦 = 𝑃 → (𝑦 𝑋𝑃 𝑋))
3229, 31biimtrdi 253 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 𝑃 → (𝑦 𝑋𝑃 𝑋)))
3332impd 410 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → ((𝑦 𝑃𝑦 𝑋) → 𝑃 𝑋))
3426, 33sylbird 260 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3534adantlr 715 . . . . . 6 ((((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) ∧ 𝑦𝐴) → (𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3635rexlimdva 3134 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (∃𝑦𝐴 𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3717, 36mpd 15 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → 𝑃 𝑋)
3837ex 412 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) ≠ 0𝑃 𝑋))
3938necon1bd 2943 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 → (𝑃 𝑋) = 0 ))
4015, 5atn0 39274 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )
41403adant3 1132 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑃0 )
424, 14, 9latleeqm1 18402 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
433, 7, 8, 42syl3anc 1373 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
4443adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
45 eqeq1 2733 . . . . . . . 8 ((𝑃 𝑋) = 𝑃 → ((𝑃 𝑋) = 0𝑃 = 0 ))
4645biimpcd 249 . . . . . . 7 ((𝑃 𝑋) = 0 → ((𝑃 𝑋) = 𝑃𝑃 = 0 ))
4746adantl 481 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → ((𝑃 𝑋) = 𝑃𝑃 = 0 ))
4844, 47sylbid 240 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 𝑋𝑃 = 0 ))
4948necon3ad 2938 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃0 → ¬ 𝑃 𝑋))
5049ex 412 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) = 0 → (𝑃0 → ¬ 𝑃 𝑋)))
5141, 50mpid 44 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) = 0 → ¬ 𝑃 𝑋))
5239, 51impbid 212 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  meetcmee 18249  0.cp0 18358  Latclat 18366  Atomscatm 39229  AtLatcal 39230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-covers 39232  df-ats 39233  df-atl 39264
This theorem is referenced by:  atnem0  39284  iscvlat2N  39290  cvlexch3  39298  cvlexch4N  39299  cvlcvrp  39306  intnatN  39374  cvrat4  39410  dalem24  39664  cdlema2N  39759  llnexchb2lem  39835  lhpmat  39997  cdleme15b  40242  cdlemednpq  40266  cdleme20zN  40268  cdleme22cN  40309  dihmeetlem7N  41277  dihmeetlem17N  41290
  Copyright terms: Public domain W3C validator