Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnle Structured version   Visualization version   GIF version

Theorem atnle 39310
Description: Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 32305 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atnle.b 𝐵 = (Base‘𝐾)
atnle.l = (le‘𝐾)
atnle.m = (meet‘𝐾)
atnle.z 0 = (0.‘𝐾)
atnle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnle ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))

Proof of Theorem atnle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → 𝐾 ∈ AtLat)
2 atllat 39293 . . . . . . . . 9 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
323ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝐾 ∈ Lat)
4 atnle.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
5 atnle.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
64, 5atbase 39282 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
763ad2ant2 1134 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑃𝐵)
8 simp3 1138 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑋𝐵)
9 atnle.m . . . . . . . . 9 = (meet‘𝐾)
104, 9latmcl 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
113, 7, 8, 10syl3anc 1373 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
1211adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (𝑃 𝑋) ∈ 𝐵)
13 simpr 484 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (𝑃 𝑋) ≠ 0 )
14 atnle.l . . . . . . 7 = (le‘𝐾)
15 atnle.z . . . . . . 7 0 = (0.‘𝐾)
164, 14, 15, 5atlex 39309 . . . . . 6 ((𝐾 ∈ AtLat ∧ (𝑃 𝑋) ∈ 𝐵 ∧ (𝑃 𝑋) ≠ 0 ) → ∃𝑦𝐴 𝑦 (𝑃 𝑋))
171, 12, 13, 16syl3anc 1373 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → ∃𝑦𝐴 𝑦 (𝑃 𝑋))
18 simpl1 1192 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝐾 ∈ AtLat)
1918, 2syl 17 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝐾 ∈ Lat)
204, 5atbase 39282 . . . . . . . . . 10 (𝑦𝐴𝑦𝐵)
2120adantl 481 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑦𝐵)
22 simpl2 1193 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑃𝐴)
2322, 6syl 17 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑃𝐵)
24 simpl3 1194 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑋𝐵)
254, 14, 9latlem12 18425 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑦𝐵𝑃𝐵𝑋𝐵)) → ((𝑦 𝑃𝑦 𝑋) ↔ 𝑦 (𝑃 𝑋)))
2619, 21, 23, 24, 25syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → ((𝑦 𝑃𝑦 𝑋) ↔ 𝑦 (𝑃 𝑋)))
27 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑦𝐴)
2814, 5atcmp 39304 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑦𝐴𝑃𝐴) → (𝑦 𝑃𝑦 = 𝑃))
2918, 27, 22, 28syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 𝑃𝑦 = 𝑃))
30 breq1 5110 . . . . . . . . . . 11 (𝑦 = 𝑃 → (𝑦 𝑋𝑃 𝑋))
3130biimpd 229 . . . . . . . . . 10 (𝑦 = 𝑃 → (𝑦 𝑋𝑃 𝑋))
3229, 31biimtrdi 253 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 𝑃 → (𝑦 𝑋𝑃 𝑋)))
3332impd 410 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → ((𝑦 𝑃𝑦 𝑋) → 𝑃 𝑋))
3426, 33sylbird 260 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3534adantlr 715 . . . . . 6 ((((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) ∧ 𝑦𝐴) → (𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3635rexlimdva 3134 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (∃𝑦𝐴 𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3717, 36mpd 15 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → 𝑃 𝑋)
3837ex 412 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) ≠ 0𝑃 𝑋))
3938necon1bd 2943 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 → (𝑃 𝑋) = 0 ))
4015, 5atn0 39301 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )
41403adant3 1132 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑃0 )
424, 14, 9latleeqm1 18426 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
433, 7, 8, 42syl3anc 1373 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
4443adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
45 eqeq1 2733 . . . . . . . 8 ((𝑃 𝑋) = 𝑃 → ((𝑃 𝑋) = 0𝑃 = 0 ))
4645biimpcd 249 . . . . . . 7 ((𝑃 𝑋) = 0 → ((𝑃 𝑋) = 𝑃𝑃 = 0 ))
4746adantl 481 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → ((𝑃 𝑋) = 𝑃𝑃 = 0 ))
4844, 47sylbid 240 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 𝑋𝑃 = 0 ))
4948necon3ad 2938 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃0 → ¬ 𝑃 𝑋))
5049ex 412 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) = 0 → (𝑃0 → ¬ 𝑃 𝑋)))
5141, 50mpid 44 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) = 0 → ¬ 𝑃 𝑋))
5239, 51impbid 212 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  meetcmee 18273  0.cp0 18382  Latclat 18390  Atomscatm 39256  AtLatcal 39257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291
This theorem is referenced by:  atnem0  39311  iscvlat2N  39317  cvlexch3  39325  cvlexch4N  39326  cvlcvrp  39333  intnatN  39401  cvrat4  39437  dalem24  39691  cdlema2N  39786  llnexchb2lem  39862  lhpmat  40024  cdleme15b  40269  cdlemednpq  40293  cdleme20zN  40295  cdleme22cN  40336  dihmeetlem7N  41304  dihmeetlem17N  41317
  Copyright terms: Public domain W3C validator