Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . . . 6
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) ≠ 0 ) → 𝐾 ∈ AtLat) |
2 | | atllat 37321 |
. . . . . . . . 9
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) |
3 | 2 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
4 | | atnle.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) |
5 | | atnle.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atbase 37310 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | 6 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝑃 ∈ 𝐵) |
8 | | simp3 1137 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
9 | | atnle.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
10 | 4, 9 | latmcl 18167 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∧ 𝑋) ∈ 𝐵) |
11 | 3, 7, 8, 10 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∧ 𝑋) ∈ 𝐵) |
12 | 11 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) ≠ 0 ) → (𝑃 ∧ 𝑋) ∈ 𝐵) |
13 | | simpr 485 |
. . . . . 6
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) ≠ 0 ) → (𝑃 ∧ 𝑋) ≠ 0 ) |
14 | | atnle.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
15 | | atnle.z |
. . . . . . 7
⊢ 0 =
(0.‘𝐾) |
16 | 4, 14, 15, 5 | atlex 37337 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ (𝑃 ∧ 𝑋) ∈ 𝐵 ∧ (𝑃 ∧ 𝑋) ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ (𝑃 ∧ 𝑋)) |
17 | 1, 12, 13, 16 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ (𝑃 ∧ 𝑋)) |
18 | | simpl1 1190 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ AtLat) |
19 | 18, 2 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ Lat) |
20 | 4, 5 | atbase 37310 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) |
21 | 20 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
22 | | simpl2 1191 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
23 | 22, 6 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
24 | | simpl3 1192 |
. . . . . . . . 9
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
25 | 4, 14, 9 | latlem12 18193 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑦 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋) ↔ 𝑦 ≤ (𝑃 ∧ 𝑋))) |
26 | 19, 21, 23, 24, 25 | syl13anc 1371 |
. . . . . . . 8
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → ((𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋) ↔ 𝑦 ≤ (𝑃 ∧ 𝑋))) |
27 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
28 | 14, 5 | atcmp 37332 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ AtLat ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑦 ≤ 𝑃 ↔ 𝑦 = 𝑃)) |
29 | 18, 27, 22, 28 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → (𝑦 ≤ 𝑃 ↔ 𝑦 = 𝑃)) |
30 | | breq1 5078 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑃 → (𝑦 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋)) |
31 | 30 | biimpd 228 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑃 → (𝑦 ≤ 𝑋 → 𝑃 ≤ 𝑋)) |
32 | 29, 31 | syl6bi 252 |
. . . . . . . . 9
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → (𝑦 ≤ 𝑃 → (𝑦 ≤ 𝑋 → 𝑃 ≤ 𝑋))) |
33 | 32 | impd 411 |
. . . . . . . 8
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → ((𝑦 ≤ 𝑃 ∧ 𝑦 ≤ 𝑋) → 𝑃 ≤ 𝑋)) |
34 | 26, 33 | sylbird 259 |
. . . . . . 7
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴) → (𝑦 ≤ (𝑃 ∧ 𝑋) → 𝑃 ≤ 𝑋)) |
35 | 34 | adantlr 712 |
. . . . . 6
⊢ ((((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) ≠ 0 ) ∧ 𝑦 ∈ 𝐴) → (𝑦 ≤ (𝑃 ∧ 𝑋) → 𝑃 ≤ 𝑋)) |
36 | 35 | rexlimdva 3214 |
. . . . 5
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) ≠ 0 ) → (∃𝑦 ∈ 𝐴 𝑦 ≤ (𝑃 ∧ 𝑋) → 𝑃 ≤ 𝑋)) |
37 | 17, 36 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) ≠ 0 ) → 𝑃 ≤ 𝑋) |
38 | 37 | ex 413 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑋) ≠ 0 → 𝑃 ≤ 𝑋)) |
39 | 38 | necon1bd 2962 |
. 2
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃 ≤ 𝑋 → (𝑃 ∧ 𝑋) = 0 )) |
40 | 15, 5 | atn0 37329 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) |
41 | 40 | 3adant3 1131 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝑃 ≠ 0 ) |
42 | 4, 14, 9 | latleeqm1 18194 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 𝑃)) |
43 | 3, 7, 8, 42 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 𝑃)) |
44 | 43 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 𝑃)) |
45 | | eqeq1 2743 |
. . . . . . . 8
⊢ ((𝑃 ∧ 𝑋) = 𝑃 → ((𝑃 ∧ 𝑋) = 0 ↔ 𝑃 = 0 )) |
46 | 45 | biimpcd 248 |
. . . . . . 7
⊢ ((𝑃 ∧ 𝑋) = 0 → ((𝑃 ∧ 𝑋) = 𝑃 → 𝑃 = 0 )) |
47 | 46 | adantl 482 |
. . . . . 6
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → ((𝑃 ∧ 𝑋) = 𝑃 → 𝑃 = 0 )) |
48 | 44, 47 | sylbid 239 |
. . . . 5
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ 𝑋 → 𝑃 = 0 )) |
49 | 48 | necon3ad 2957 |
. . . 4
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≠ 0 → ¬ 𝑃 ≤ 𝑋)) |
50 | 49 | ex 413 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑋) = 0 → (𝑃 ≠ 0 → ¬ 𝑃 ≤ 𝑋))) |
51 | 41, 50 | mpid 44 |
. 2
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∧ 𝑋) = 0 → ¬ 𝑃 ≤ 𝑋)) |
52 | 39, 51 | impbid 211 |
1
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) |