Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnle Structured version   Visualization version   GIF version

Theorem atnle 37338
Description: Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 30747 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atnle.b 𝐵 = (Base‘𝐾)
atnle.l = (le‘𝐾)
atnle.m = (meet‘𝐾)
atnle.z 0 = (0.‘𝐾)
atnle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnle ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))

Proof of Theorem atnle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → 𝐾 ∈ AtLat)
2 atllat 37321 . . . . . . . . 9 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
323ad2ant1 1132 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝐾 ∈ Lat)
4 atnle.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
5 atnle.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
64, 5atbase 37310 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
763ad2ant2 1133 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑃𝐵)
8 simp3 1137 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑋𝐵)
9 atnle.m . . . . . . . . 9 = (meet‘𝐾)
104, 9latmcl 18167 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
113, 7, 8, 10syl3anc 1370 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
1211adantr 481 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (𝑃 𝑋) ∈ 𝐵)
13 simpr 485 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (𝑃 𝑋) ≠ 0 )
14 atnle.l . . . . . . 7 = (le‘𝐾)
15 atnle.z . . . . . . 7 0 = (0.‘𝐾)
164, 14, 15, 5atlex 37337 . . . . . 6 ((𝐾 ∈ AtLat ∧ (𝑃 𝑋) ∈ 𝐵 ∧ (𝑃 𝑋) ≠ 0 ) → ∃𝑦𝐴 𝑦 (𝑃 𝑋))
171, 12, 13, 16syl3anc 1370 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → ∃𝑦𝐴 𝑦 (𝑃 𝑋))
18 simpl1 1190 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝐾 ∈ AtLat)
1918, 2syl 17 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝐾 ∈ Lat)
204, 5atbase 37310 . . . . . . . . . 10 (𝑦𝐴𝑦𝐵)
2120adantl 482 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑦𝐵)
22 simpl2 1191 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑃𝐴)
2322, 6syl 17 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑃𝐵)
24 simpl3 1192 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑋𝐵)
254, 14, 9latlem12 18193 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑦𝐵𝑃𝐵𝑋𝐵)) → ((𝑦 𝑃𝑦 𝑋) ↔ 𝑦 (𝑃 𝑋)))
2619, 21, 23, 24, 25syl13anc 1371 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → ((𝑦 𝑃𝑦 𝑋) ↔ 𝑦 (𝑃 𝑋)))
27 simpr 485 . . . . . . . . . . 11 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑦𝐴)
2814, 5atcmp 37332 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑦𝐴𝑃𝐴) → (𝑦 𝑃𝑦 = 𝑃))
2918, 27, 22, 28syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 𝑃𝑦 = 𝑃))
30 breq1 5078 . . . . . . . . . . 11 (𝑦 = 𝑃 → (𝑦 𝑋𝑃 𝑋))
3130biimpd 228 . . . . . . . . . 10 (𝑦 = 𝑃 → (𝑦 𝑋𝑃 𝑋))
3229, 31syl6bi 252 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 𝑃 → (𝑦 𝑋𝑃 𝑋)))
3332impd 411 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → ((𝑦 𝑃𝑦 𝑋) → 𝑃 𝑋))
3426, 33sylbird 259 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3534adantlr 712 . . . . . 6 ((((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) ∧ 𝑦𝐴) → (𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3635rexlimdva 3214 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (∃𝑦𝐴 𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3717, 36mpd 15 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → 𝑃 𝑋)
3837ex 413 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) ≠ 0𝑃 𝑋))
3938necon1bd 2962 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 → (𝑃 𝑋) = 0 ))
4015, 5atn0 37329 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )
41403adant3 1131 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑃0 )
424, 14, 9latleeqm1 18194 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
433, 7, 8, 42syl3anc 1370 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
4443adantr 481 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
45 eqeq1 2743 . . . . . . . 8 ((𝑃 𝑋) = 𝑃 → ((𝑃 𝑋) = 0𝑃 = 0 ))
4645biimpcd 248 . . . . . . 7 ((𝑃 𝑋) = 0 → ((𝑃 𝑋) = 𝑃𝑃 = 0 ))
4746adantl 482 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → ((𝑃 𝑋) = 𝑃𝑃 = 0 ))
4844, 47sylbid 239 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 𝑋𝑃 = 0 ))
4948necon3ad 2957 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃0 → ¬ 𝑃 𝑋))
5049ex 413 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) = 0 → (𝑃0 → ¬ 𝑃 𝑋)))
5141, 50mpid 44 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) = 0 → ¬ 𝑃 𝑋))
5239, 51impbid 211 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wrex 3066   class class class wbr 5075  cfv 6437  (class class class)co 7284  Basecbs 16921  lecple 16978  meetcmee 18039  0.cp0 18150  Latclat 18158  Atomscatm 37284  AtLatcal 37285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-proset 18022  df-poset 18040  df-plt 18057  df-lub 18073  df-glb 18074  df-join 18075  df-meet 18076  df-p0 18152  df-lat 18159  df-covers 37287  df-ats 37288  df-atl 37319
This theorem is referenced by:  atnem0  37339  iscvlat2N  37345  cvlexch3  37353  cvlexch4N  37354  cvlcvrp  37361  intnatN  37428  cvrat4  37464  dalem24  37718  cdlema2N  37813  llnexchb2lem  37889  lhpmat  38051  cdleme15b  38296  cdlemednpq  38320  cdleme20zN  38322  cdleme22cN  38363  dihmeetlem7N  39331  dihmeetlem17N  39344
  Copyright terms: Public domain W3C validator