Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnle Structured version   Visualization version   GIF version

Theorem atnle 36333
Description: Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 30080 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atnle.b 𝐵 = (Base‘𝐾)
atnle.l = (le‘𝐾)
atnle.m = (meet‘𝐾)
atnle.z 0 = (0.‘𝐾)
atnle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnle ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))

Proof of Theorem atnle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1183 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → 𝐾 ∈ AtLat)
2 atllat 36316 . . . . . . . . 9 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
323ad2ant1 1125 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝐾 ∈ Lat)
4 atnle.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
5 atnle.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
64, 5atbase 36305 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
763ad2ant2 1126 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑃𝐵)
8 simp3 1130 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑋𝐵)
9 atnle.m . . . . . . . . 9 = (meet‘𝐾)
104, 9latmcl 17650 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
113, 7, 8, 10syl3anc 1363 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
1211adantr 481 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (𝑃 𝑋) ∈ 𝐵)
13 simpr 485 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (𝑃 𝑋) ≠ 0 )
14 atnle.l . . . . . . 7 = (le‘𝐾)
15 atnle.z . . . . . . 7 0 = (0.‘𝐾)
164, 14, 15, 5atlex 36332 . . . . . 6 ((𝐾 ∈ AtLat ∧ (𝑃 𝑋) ∈ 𝐵 ∧ (𝑃 𝑋) ≠ 0 ) → ∃𝑦𝐴 𝑦 (𝑃 𝑋))
171, 12, 13, 16syl3anc 1363 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → ∃𝑦𝐴 𝑦 (𝑃 𝑋))
18 simpl1 1183 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝐾 ∈ AtLat)
1918, 2syl 17 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝐾 ∈ Lat)
204, 5atbase 36305 . . . . . . . . . 10 (𝑦𝐴𝑦𝐵)
2120adantl 482 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑦𝐵)
22 simpl2 1184 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑃𝐴)
2322, 6syl 17 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑃𝐵)
24 simpl3 1185 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑋𝐵)
254, 14, 9latlem12 17676 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑦𝐵𝑃𝐵𝑋𝐵)) → ((𝑦 𝑃𝑦 𝑋) ↔ 𝑦 (𝑃 𝑋)))
2619, 21, 23, 24, 25syl13anc 1364 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → ((𝑦 𝑃𝑦 𝑋) ↔ 𝑦 (𝑃 𝑋)))
27 simpr 485 . . . . . . . . . . 11 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → 𝑦𝐴)
2814, 5atcmp 36327 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑦𝐴𝑃𝐴) → (𝑦 𝑃𝑦 = 𝑃))
2918, 27, 22, 28syl3anc 1363 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 𝑃𝑦 = 𝑃))
30 breq1 5060 . . . . . . . . . . 11 (𝑦 = 𝑃 → (𝑦 𝑋𝑃 𝑋))
3130biimpd 230 . . . . . . . . . 10 (𝑦 = 𝑃 → (𝑦 𝑋𝑃 𝑋))
3229, 31syl6bi 254 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 𝑃 → (𝑦 𝑋𝑃 𝑋)))
3332impd 411 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → ((𝑦 𝑃𝑦 𝑋) → 𝑃 𝑋))
3426, 33sylbird 261 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ 𝑦𝐴) → (𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3534adantlr 711 . . . . . 6 ((((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) ∧ 𝑦𝐴) → (𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3635rexlimdva 3281 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → (∃𝑦𝐴 𝑦 (𝑃 𝑋) → 𝑃 𝑋))
3717, 36mpd 15 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) ≠ 0 ) → 𝑃 𝑋)
3837ex 413 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) ≠ 0𝑃 𝑋))
3938necon1bd 3031 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 → (𝑃 𝑋) = 0 ))
4015, 5atn0 36324 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )
41403adant3 1124 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → 𝑃0 )
424, 14, 9latleeqm1 17677 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
433, 7, 8, 42syl3anc 1363 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
4443adantr 481 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 𝑋 ↔ (𝑃 𝑋) = 𝑃))
45 eqeq1 2822 . . . . . . . 8 ((𝑃 𝑋) = 𝑃 → ((𝑃 𝑋) = 0𝑃 = 0 ))
4645biimpcd 250 . . . . . . 7 ((𝑃 𝑋) = 0 → ((𝑃 𝑋) = 𝑃𝑃 = 0 ))
4746adantl 482 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → ((𝑃 𝑋) = 𝑃𝑃 = 0 ))
4844, 47sylbid 241 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 𝑋𝑃 = 0 ))
4948necon3ad 3026 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃0 → ¬ 𝑃 𝑋))
5049ex 413 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) = 0 → (𝑃0 → ¬ 𝑃 𝑋)))
5141, 50mpid 44 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → ((𝑃 𝑋) = 0 → ¬ 𝑃 𝑋))
5239, 51impbid 213 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  Basecbs 16471  lecple 16560  meetcmee 17543  0.cp0 17635  Latclat 17643  Atomscatm 36279  AtLatcal 36280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-lat 17644  df-covers 36282  df-ats 36283  df-atl 36314
This theorem is referenced by:  atnem0  36334  iscvlat2N  36340  cvlexch3  36348  cvlexch4N  36349  cvlcvrp  36356  intnatN  36423  cvrat4  36459  dalem24  36713  cdlema2N  36808  llnexchb2lem  36884  lhpmat  37046  cdleme15b  37291  cdlemednpq  37315  cdleme20zN  37317  cdleme22cN  37358  dihmeetlem7N  38326  dihmeetlem17N  38339
  Copyright terms: Public domain W3C validator