![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isocnv2 | Structured version Visualization version GIF version |
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
isocnv2 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3295 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) | |
2 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 5907 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
5 | fvex 6933 | . . . . . . 7 ⊢ (𝐻‘𝑥) ∈ V | |
6 | fvex 6933 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
7 | 5, 6 | brcnv 5907 | . . . . . 6 ⊢ ((𝐻‘𝑥)◡𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) |
8 | 4, 7 | bibi12i 339 | . . . . 5 ⊢ ((𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
9 | 8 | 2ralbii 3134 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
10 | 1, 9 | bitr4i 278 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦))) |
11 | 10 | anbi2i 622 | . 2 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) |
12 | df-isom 6582 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)))) | |
13 | df-isom 6582 | . 2 ⊢ (𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) | |
14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3067 class class class wbr 5166 ◡ccnv 5699 –1-1-onto→wf1o 6572 ‘cfv 6573 Isom wiso 6574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-iota 6525 df-fv 6581 df-isom 6582 |
This theorem is referenced by: infiso 9577 wofib 9614 leiso 14508 gtiso 32712 |
Copyright terms: Public domain | W3C validator |