| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isocnv2 | Structured version Visualization version GIF version | ||
| Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| isocnv2 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3289 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) | |
| 2 | vex 3484 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | vex 3484 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | brcnv 5893 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 5 | fvex 6919 | . . . . . . 7 ⊢ (𝐻‘𝑥) ∈ V | |
| 6 | fvex 6919 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
| 7 | 5, 6 | brcnv 5893 | . . . . . 6 ⊢ ((𝐻‘𝑥)◡𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) |
| 8 | 4, 7 | bibi12i 339 | . . . . 5 ⊢ ((𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
| 9 | 8 | 2ralbii 3128 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
| 10 | 1, 9 | bitr4i 278 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦))) |
| 11 | 10 | anbi2i 623 | . 2 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) |
| 12 | df-isom 6570 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)))) | |
| 13 | df-isom 6570 | . 2 ⊢ (𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3061 class class class wbr 5143 ◡ccnv 5684 –1-1-onto→wf1o 6560 ‘cfv 6561 Isom wiso 6562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-cnv 5693 df-iota 6514 df-fv 6569 df-isom 6570 |
| This theorem is referenced by: infiso 9548 wofib 9585 leiso 14498 gtiso 32710 |
| Copyright terms: Public domain | W3C validator |