Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isocnv2 | Structured version Visualization version GIF version |
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
isocnv2 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3259 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) | |
2 | vex 3403 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | vex 3403 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 5726 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
5 | fvex 6690 | . . . . . . 7 ⊢ (𝐻‘𝑥) ∈ V | |
6 | fvex 6690 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
7 | 5, 6 | brcnv 5726 | . . . . . 6 ⊢ ((𝐻‘𝑥)◡𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) |
8 | 4, 7 | bibi12i 343 | . . . . 5 ⊢ ((𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
9 | 8 | 2ralbii 3082 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
10 | 1, 9 | bitr4i 281 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦))) |
11 | 10 | anbi2i 626 | . 2 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) |
12 | df-isom 6349 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)))) | |
13 | df-isom 6349 | . 2 ⊢ (𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) | |
14 | 11, 12, 13 | 3bitr4i 306 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∀wral 3054 class class class wbr 5031 ◡ccnv 5525 –1-1-onto→wf1o 6339 ‘cfv 6340 Isom wiso 6341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-v 3401 df-sbc 3682 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-cnv 5534 df-iota 6298 df-fv 6348 df-isom 6349 |
This theorem is referenced by: infiso 9048 wofib 9085 leiso 13914 gtiso 30611 |
Copyright terms: Public domain | W3C validator |