Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isocnv2 | Structured version Visualization version GIF version |
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
isocnv2 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3269 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) | |
2 | vex 3441 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | vex 3441 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 5804 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
5 | fvex 6817 | . . . . . . 7 ⊢ (𝐻‘𝑥) ∈ V | |
6 | fvex 6817 | . . . . . . 7 ⊢ (𝐻‘𝑦) ∈ V | |
7 | 5, 6 | brcnv 5804 | . . . . . 6 ⊢ ((𝐻‘𝑥)◡𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) |
8 | 4, 7 | bibi12i 340 | . . . . 5 ⊢ ((𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
9 | 8 | 2ralbii 3124 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
10 | 1, 9 | bitr4i 278 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦))) |
11 | 10 | anbi2i 624 | . 2 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) |
12 | df-isom 6467 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)))) | |
13 | df-isom 6467 | . 2 ⊢ (𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) | |
14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∀wral 3062 class class class wbr 5081 ◡ccnv 5599 –1-1-onto→wf1o 6457 ‘cfv 6458 Isom wiso 6459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-cnv 5608 df-iota 6410 df-fv 6466 df-isom 6467 |
This theorem is referenced by: infiso 9315 wofib 9352 leiso 14222 gtiso 31082 |
Copyright terms: Public domain | W3C validator |