| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2uplex | Structured version Visualization version GIF version | ||
| Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-2uplex | ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr21val 37068 | . . . 4 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | |
| 2 | bj-pr1ex 37061 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → pr1 ⦅𝐴, 𝐵⦆ ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2838 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → 𝐴 ∈ V) |
| 4 | bj-pr22val 37074 | . . . 4 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | |
| 5 | bj-pr2ex 37075 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → pr2 ⦅𝐴, 𝐵⦆ ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2838 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → 𝐵 ∈ V) |
| 7 | 3, 6 | jca 511 | . 2 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 8 | df-bj-2upl 37066 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 9 | bj-1uplex 37063 | . . . . 5 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) | |
| 10 | 9 | biimpri 228 | . . . 4 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
| 11 | snex 5378 | . . . . 5 ⊢ {1o} ∈ V | |
| 12 | bj-xtagex 37044 | . . . . 5 ⊢ ({1o} ∈ V → (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V)) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V) |
| 14 | unexg 7685 | . . . 4 ⊢ ((⦅𝐴⦆ ∈ V ∧ ({1o} × tag 𝐵) ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V) | |
| 15 | 10, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V) |
| 16 | 8, 15 | eqeltrid 2837 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⦅𝐴, 𝐵⦆ ∈ V) |
| 17 | 7, 16 | impbii 209 | 1 ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3438 ∪ cun 3897 {csn 4577 × cxp 5619 1oc1o 8387 tag bj-ctag 37029 ⦅bj-c1upl 37052 pr1 bj-cpr1 37055 ⦅bj-c2uple 37065 pr2 bj-cpr2 37069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6320 df-1o 8394 df-bj-sngl 37021 df-bj-tag 37030 df-bj-proj 37046 df-bj-1upl 37053 df-bj-pr1 37056 df-bj-2upl 37066 df-bj-pr2 37070 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |