Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2uplex Structured version   Visualization version   GIF version

Theorem bj-2uplex 35212
Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-2uplex (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-2uplex
StepHypRef Expression
1 bj-pr21val 35203 . . . 4 pr1𝐴, 𝐵⦆ = 𝐴
2 bj-pr1ex 35196 . . . 4 (⦅𝐴, 𝐵⦆ ∈ V → pr1𝐴, 𝐵⦆ ∈ V)
31, 2eqeltrrid 2844 . . 3 (⦅𝐴, 𝐵⦆ ∈ V → 𝐴 ∈ V)
4 bj-pr22val 35209 . . . 4 pr2𝐴, 𝐵⦆ = 𝐵
5 bj-pr2ex 35210 . . . 4 (⦅𝐴, 𝐵⦆ ∈ V → pr2𝐴, 𝐵⦆ ∈ V)
64, 5eqeltrrid 2844 . . 3 (⦅𝐴, 𝐵⦆ ∈ V → 𝐵 ∈ V)
73, 6jca 512 . 2 (⦅𝐴, 𝐵⦆ ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
8 df-bj-2upl 35201 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
9 bj-1uplex 35198 . . . . 5 (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)
109biimpri 227 . . . 4 (𝐴 ∈ V → ⦅𝐴⦆ ∈ V)
11 snex 5354 . . . . 5 {1o} ∈ V
12 bj-xtagex 35179 . . . . 5 ({1o} ∈ V → (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V))
1311, 12ax-mp 5 . . . 4 (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V)
14 unexg 7599 . . . 4 ((⦅𝐴⦆ ∈ V ∧ ({1o} × tag 𝐵) ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V)
1510, 13, 14syl2an 596 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V)
168, 15eqeltrid 2843 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⦅𝐴, 𝐵⦆ ∈ V)
177, 16impbii 208 1 (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  cun 3885  {csn 4561   × cxp 5587  1oc1o 8290  tag bj-ctag 35164  bj-c1upl 35187  pr1 bj-cpr1 35190  bj-c2uple 35200  pr2 bj-cpr2 35204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-1o 8297  df-bj-sngl 35156  df-bj-tag 35165  df-bj-proj 35181  df-bj-1upl 35188  df-bj-pr1 35191  df-bj-2upl 35201  df-bj-pr2 35205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator