Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2uplex | Structured version Visualization version GIF version |
Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-2uplex | ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr21val 35130 | . . . 4 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | |
2 | bj-pr1ex 35123 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → pr1 ⦅𝐴, 𝐵⦆ ∈ V) | |
3 | 1, 2 | eqeltrrid 2844 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → 𝐴 ∈ V) |
4 | bj-pr22val 35136 | . . . 4 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | |
5 | bj-pr2ex 35137 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → pr2 ⦅𝐴, 𝐵⦆ ∈ V) | |
6 | 4, 5 | eqeltrrid 2844 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → 𝐵 ∈ V) |
7 | 3, 6 | jca 511 | . 2 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | df-bj-2upl 35128 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
9 | bj-1uplex 35125 | . . . . 5 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) | |
10 | 9 | biimpri 227 | . . . 4 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
11 | snex 5349 | . . . . 5 ⊢ {1o} ∈ V | |
12 | bj-xtagex 35106 | . . . . 5 ⊢ ({1o} ∈ V → (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V) |
14 | unexg 7577 | . . . 4 ⊢ ((⦅𝐴⦆ ∈ V ∧ ({1o} × tag 𝐵) ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V) | |
15 | 10, 13, 14 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V) |
16 | 8, 15 | eqeltrid 2843 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⦅𝐴, 𝐵⦆ ∈ V) |
17 | 7, 16 | impbii 208 | 1 ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {csn 4558 × cxp 5578 1oc1o 8260 tag bj-ctag 35091 ⦅bj-c1upl 35114 pr1 bj-cpr1 35117 ⦅bj-c2uple 35127 pr2 bj-cpr2 35131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-1o 8267 df-bj-sngl 35083 df-bj-tag 35092 df-bj-proj 35108 df-bj-1upl 35115 df-bj-pr1 35118 df-bj-2upl 35128 df-bj-pr2 35132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |