Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2uplex Structured version   Visualization version   GIF version

Theorem bj-2uplex 36988
Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-2uplex (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-2uplex
StepHypRef Expression
1 bj-pr21val 36979 . . . 4 pr1𝐴, 𝐵⦆ = 𝐴
2 bj-pr1ex 36972 . . . 4 (⦅𝐴, 𝐵⦆ ∈ V → pr1𝐴, 𝐵⦆ ∈ V)
31, 2eqeltrrid 2849 . . 3 (⦅𝐴, 𝐵⦆ ∈ V → 𝐴 ∈ V)
4 bj-pr22val 36985 . . . 4 pr2𝐴, 𝐵⦆ = 𝐵
5 bj-pr2ex 36986 . . . 4 (⦅𝐴, 𝐵⦆ ∈ V → pr2𝐴, 𝐵⦆ ∈ V)
64, 5eqeltrrid 2849 . . 3 (⦅𝐴, 𝐵⦆ ∈ V → 𝐵 ∈ V)
73, 6jca 511 . 2 (⦅𝐴, 𝐵⦆ ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
8 df-bj-2upl 36977 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
9 bj-1uplex 36974 . . . . 5 (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)
109biimpri 228 . . . 4 (𝐴 ∈ V → ⦅𝐴⦆ ∈ V)
11 snex 5451 . . . . 5 {1o} ∈ V
12 bj-xtagex 36955 . . . . 5 ({1o} ∈ V → (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V))
1311, 12ax-mp 5 . . . 4 (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V)
14 unexg 7778 . . . 4 ((⦅𝐴⦆ ∈ V ∧ ({1o} × tag 𝐵) ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V)
1510, 13, 14syl2an 595 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V)
168, 15eqeltrid 2848 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⦅𝐴, 𝐵⦆ ∈ V)
177, 16impbii 209 1 (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3488  cun 3974  {csn 4648   × cxp 5698  1oc1o 8515  tag bj-ctag 36940  bj-c1upl 36963  pr1 bj-cpr1 36966  bj-c2uple 36976  pr2 bj-cpr2 36980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-1o 8522  df-bj-sngl 36932  df-bj-tag 36941  df-bj-proj 36957  df-bj-1upl 36964  df-bj-pr1 36967  df-bj-2upl 36977  df-bj-pr2 36981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator