| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2uplex | Structured version Visualization version GIF version | ||
| Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-2uplex | ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr21val 37026 | . . . 4 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | |
| 2 | bj-pr1ex 37019 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → pr1 ⦅𝐴, 𝐵⦆ ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2834 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → 𝐴 ∈ V) |
| 4 | bj-pr22val 37032 | . . . 4 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | |
| 5 | bj-pr2ex 37033 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → pr2 ⦅𝐴, 𝐵⦆ ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2834 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → 𝐵 ∈ V) |
| 7 | 3, 6 | jca 511 | . 2 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 8 | df-bj-2upl 37024 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 9 | bj-1uplex 37021 | . . . . 5 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) | |
| 10 | 9 | biimpri 228 | . . . 4 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
| 11 | snex 5372 | . . . . 5 ⊢ {1o} ∈ V | |
| 12 | bj-xtagex 37002 | . . . . 5 ⊢ ({1o} ∈ V → (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V)) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V) |
| 14 | unexg 7671 | . . . 4 ⊢ ((⦅𝐴⦆ ∈ V ∧ ({1o} × tag 𝐵) ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V) | |
| 15 | 10, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V) |
| 16 | 8, 15 | eqeltrid 2833 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⦅𝐴, 𝐵⦆ ∈ V) |
| 17 | 7, 16 | impbii 209 | 1 ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 Vcvv 3434 ∪ cun 3898 {csn 4574 × cxp 5612 1oc1o 8373 tag bj-ctag 36987 ⦅bj-c1upl 37010 pr1 bj-cpr1 37013 ⦅bj-c2uple 37023 pr2 bj-cpr2 37027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6308 df-1o 8380 df-bj-sngl 36979 df-bj-tag 36988 df-bj-proj 37004 df-bj-1upl 37011 df-bj-pr1 37014 df-bj-2upl 37024 df-bj-pr2 37028 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |