Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2uplex Structured version   Visualization version   GIF version

Theorem bj-2uplex 34322
 Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-2uplex (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-2uplex
StepHypRef Expression
1 bj-pr21val 34313 . . . 4 pr1𝐴, 𝐵⦆ = 𝐴
2 bj-pr1ex 34306 . . . 4 (⦅𝐴, 𝐵⦆ ∈ V → pr1𝐴, 𝐵⦆ ∈ V)
31, 2eqeltrrid 2916 . . 3 (⦅𝐴, 𝐵⦆ ∈ V → 𝐴 ∈ V)
4 bj-pr22val 34319 . . . 4 pr2𝐴, 𝐵⦆ = 𝐵
5 bj-pr2ex 34320 . . . 4 (⦅𝐴, 𝐵⦆ ∈ V → pr2𝐴, 𝐵⦆ ∈ V)
64, 5eqeltrrid 2916 . . 3 (⦅𝐴, 𝐵⦆ ∈ V → 𝐵 ∈ V)
73, 6jca 514 . 2 (⦅𝐴, 𝐵⦆ ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
8 df-bj-2upl 34311 . . 3 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
9 bj-1uplex 34308 . . . . 5 (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)
109biimpri 230 . . . 4 (𝐴 ∈ V → ⦅𝐴⦆ ∈ V)
11 snex 5322 . . . . 5 {1o} ∈ V
12 bj-xtagex 34289 . . . . 5 ({1o} ∈ V → (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V))
1311, 12ax-mp 5 . . . 4 (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V)
14 unexg 7464 . . . 4 ((⦅𝐴⦆ ∈ V ∧ ({1o} × tag 𝐵) ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V)
1510, 13, 14syl2an 597 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V)
168, 15eqeltrid 2915 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⦅𝐴, 𝐵⦆ ∈ V)
177, 16impbii 211 1 (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∈ wcel 2107  Vcvv 3493   ∪ cun 3932  {csn 4559   × cxp 5546  1oc1o 8087  tag bj-ctag 34274  ⦅bj-c1upl 34297  pr1 bj-cpr1 34300  ⦅bj-c2uple 34310  pr2 bj-cpr2 34314 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-suc 6190  df-1o 8094  df-bj-sngl 34266  df-bj-tag 34275  df-bj-proj 34291  df-bj-1upl 34298  df-bj-pr1 34301  df-bj-2upl 34311  df-bj-pr2 34315 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator