| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2uplex | Structured version Visualization version GIF version | ||
| Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-2uplex | ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr21val 37008 | . . . 4 ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | |
| 2 | bj-pr1ex 37001 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → pr1 ⦅𝐴, 𝐵⦆ ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2834 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → 𝐴 ∈ V) |
| 4 | bj-pr22val 37014 | . . . 4 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | |
| 5 | bj-pr2ex 37015 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → pr2 ⦅𝐴, 𝐵⦆ ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2834 | . . 3 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → 𝐵 ∈ V) |
| 7 | 3, 6 | jca 511 | . 2 ⊢ (⦅𝐴, 𝐵⦆ ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 8 | df-bj-2upl 37006 | . . 3 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 9 | bj-1uplex 37003 | . . . . 5 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) | |
| 10 | 9 | biimpri 228 | . . . 4 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
| 11 | snex 5394 | . . . . 5 ⊢ {1o} ∈ V | |
| 12 | bj-xtagex 36984 | . . . . 5 ⊢ ({1o} ∈ V → (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V)) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ V → ({1o} × tag 𝐵) ∈ V) |
| 14 | unexg 7722 | . . . 4 ⊢ ((⦅𝐴⦆ ∈ V ∧ ({1o} × tag 𝐵) ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V) | |
| 15 | 10, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ∈ V) |
| 16 | 8, 15 | eqeltrid 2833 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⦅𝐴, 𝐵⦆ ∈ V) |
| 17 | 7, 16 | impbii 209 | 1 ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {csn 4592 × cxp 5639 1oc1o 8430 tag bj-ctag 36969 ⦅bj-c1upl 36992 pr1 bj-cpr1 36995 ⦅bj-c2uple 37005 pr2 bj-cpr2 37009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-1o 8437 df-bj-sngl 36961 df-bj-tag 36970 df-bj-proj 36986 df-bj-1upl 36993 df-bj-pr1 36996 df-bj-2upl 37006 df-bj-pr2 37010 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |