Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isclm Structured version   Visualization version   GIF version

Theorem bj-isclm 37314
Description: The predicate "is a subcomplex module". (Contributed by BJ, 6-Jan-2024.)
Hypotheses
Ref Expression
bj-isclm.scal (𝜑𝐹 = (Scalar‘𝑊))
bj-isclm.base (𝜑𝐾 = (Base‘𝐹))
Assertion
Ref Expression
bj-isclm (𝜑 → (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))

Proof of Theorem bj-isclm
StepHypRef Expression
1 eqid 2736 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2736 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31, 2isclm 25020 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)))
4 bj-isclm.scal . . . . 5 (𝜑𝐹 = (Scalar‘𝑊))
54eqcomd 2742 . . . 4 (𝜑 → (Scalar‘𝑊) = 𝐹)
6 bj-isclm.base . . . . . . 7 (𝜑𝐾 = (Base‘𝐹))
7 fveq2 6881 . . . . . . 7 (𝐹 = (Scalar‘𝑊) → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
8 eqtr 2756 . . . . . . . . 9 ((𝐾 = (Base‘𝐹) ∧ (Base‘𝐹) = (Base‘(Scalar‘𝑊))) → 𝐾 = (Base‘(Scalar‘𝑊)))
98eqcomd 2742 . . . . . . . 8 ((𝐾 = (Base‘𝐹) ∧ (Base‘𝐹) = (Base‘(Scalar‘𝑊))) → (Base‘(Scalar‘𝑊)) = 𝐾)
109ex 412 . . . . . . 7 (𝐾 = (Base‘𝐹) → ((Base‘𝐹) = (Base‘(Scalar‘𝑊)) → (Base‘(Scalar‘𝑊)) = 𝐾))
116, 7, 10syl2im 40 . . . . . 6 (𝜑 → (𝐹 = (Scalar‘𝑊) → (Base‘(Scalar‘𝑊)) = 𝐾))
124, 11mpd 15 . . . . 5 (𝜑 → (Base‘(Scalar‘𝑊)) = 𝐾)
1312oveq2d 7426 . . . 4 (𝜑 → (ℂflds (Base‘(Scalar‘𝑊))) = (ℂflds 𝐾))
145, 13eqeq12d 2752 . . 3 (𝜑 → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ 𝐹 = (ℂflds 𝐾)))
1512eleq1d 2820 . . 3 (𝜑 → ((Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld) ↔ 𝐾 ∈ (SubRing‘ℂfld)))
1614, 153anbi23d 1441 . 2 (𝜑 → ((𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)) ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
173, 16bitrid 283 1 (𝜑 → (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  Scalarcsca 17279  SubRingcsubrg 20534  LModclmod 20822  fldccnfld 21320  ℂModcclm 25018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-clm 25019
This theorem is referenced by:  bj-rveccmod  37325
  Copyright terms: Public domain W3C validator