Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-isclm Structured version   Visualization version   GIF version

Theorem bj-isclm 35441
Description: The predicate "is a subcomplex module". (Contributed by BJ, 6-Jan-2024.)
Hypotheses
Ref Expression
bj-isclm.scal (𝜑𝐹 = (Scalar‘𝑊))
bj-isclm.base (𝜑𝐾 = (Base‘𝐹))
Assertion
Ref Expression
bj-isclm (𝜑 → (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))

Proof of Theorem bj-isclm
StepHypRef Expression
1 eqid 2739 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2739 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31, 2isclm 24208 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)))
4 bj-isclm.scal . . . . 5 (𝜑𝐹 = (Scalar‘𝑊))
54eqcomd 2745 . . . 4 (𝜑 → (Scalar‘𝑊) = 𝐹)
6 bj-isclm.base . . . . . . 7 (𝜑𝐾 = (Base‘𝐹))
7 fveq2 6768 . . . . . . 7 (𝐹 = (Scalar‘𝑊) → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
8 eqtr 2762 . . . . . . . . 9 ((𝐾 = (Base‘𝐹) ∧ (Base‘𝐹) = (Base‘(Scalar‘𝑊))) → 𝐾 = (Base‘(Scalar‘𝑊)))
98eqcomd 2745 . . . . . . . 8 ((𝐾 = (Base‘𝐹) ∧ (Base‘𝐹) = (Base‘(Scalar‘𝑊))) → (Base‘(Scalar‘𝑊)) = 𝐾)
109ex 412 . . . . . . 7 (𝐾 = (Base‘𝐹) → ((Base‘𝐹) = (Base‘(Scalar‘𝑊)) → (Base‘(Scalar‘𝑊)) = 𝐾))
116, 7, 10syl2im 40 . . . . . 6 (𝜑 → (𝐹 = (Scalar‘𝑊) → (Base‘(Scalar‘𝑊)) = 𝐾))
124, 11mpd 15 . . . . 5 (𝜑 → (Base‘(Scalar‘𝑊)) = 𝐾)
1312oveq2d 7284 . . . 4 (𝜑 → (ℂflds (Base‘(Scalar‘𝑊))) = (ℂflds 𝐾))
145, 13eqeq12d 2755 . . 3 (𝜑 → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ 𝐹 = (ℂflds 𝐾)))
1512eleq1d 2824 . . 3 (𝜑 → ((Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld) ↔ 𝐾 ∈ (SubRing‘ℂfld)))
1614, 153anbi23d 1437 . 2 (𝜑 → ((𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)) ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
173, 16syl5bb 282 1 (𝜑 → (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  Basecbs 16893  s cress 16922  Scalarcsca 16946  SubRingcsubrg 20001  LModclmod 20104  fldccnfld 20578  ℂModcclm 24206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271  df-clm 24207
This theorem is referenced by:  bj-rveccmod  35452
  Copyright terms: Public domain W3C validator