| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upwlkbprop | Structured version Visualization version GIF version | ||
| Description: Basic properties of a simple walk. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 29-Dec-2020.) |
| Ref | Expression |
|---|---|
| upwlksfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upwlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upwlkbprop | ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upwlksfval.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | upwlksfval.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | upwlksfval 48119 | . . . . . . 7 ⊢ (𝐺 ∈ V → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| 4 | 3 | breqd 5103 | . . . . . 6 ⊢ (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}𝑃)) |
| 5 | brabv 5509 | . . . . . 6 ⊢ (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 6 | 4, 5 | biimtrdi 253 | . . . . 5 ⊢ (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 7 | 6 | imdistani 568 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹(UPWalks‘𝐺)𝑃) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 8 | 3anass 1094 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐹(UPWalks‘𝐺)𝑃) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| 10 | 9 | ex 412 | . 2 ⊢ (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 11 | fvprc 6814 | . . 3 ⊢ (¬ 𝐺 ∈ V → (UPWalks‘𝐺) = ∅) | |
| 12 | breq 5094 | . . . 4 ⊢ ((UPWalks‘𝐺) = ∅ → (𝐹(UPWalks‘𝐺)𝑃 ↔ 𝐹∅𝑃)) | |
| 13 | br0 5141 | . . . . 5 ⊢ ¬ 𝐹∅𝑃 | |
| 14 | 13 | pm2.21i 119 | . . . 4 ⊢ (𝐹∅𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| 15 | 12, 14 | biimtrdi 253 | . . 3 ⊢ ((UPWalks‘𝐺) = ∅ → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 16 | 11, 15 | syl 17 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 17 | 10, 16 | pm2.61i 182 | 1 ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∅c0 4284 {cpr 4579 class class class wbr 5092 {copab 5154 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 Word cword 14420 Vtxcvtx 28941 iEdgciedg 28942 UPWalkscupwlks 48117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-upwlks 48118 |
| This theorem is referenced by: upwlkwlk 48123 |
| Copyright terms: Public domain | W3C validator |