Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwlkbprop Structured version   Visualization version   GIF version

Theorem upwlkbprop 48099
Description: Basic properties of a simple walk. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 29-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtx‘𝐺)
upwlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upwlkbprop (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))

Proof of Theorem upwlkbprop
Dummy variables 𝑓 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upwlksfval.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
2 upwlksfval.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
31, 2upwlksfval 48096 . . . . . . 7 (𝐺 ∈ V → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
43breqd 5113 . . . . . 6 (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}𝑃))
5 brabv 5521 . . . . . 6 (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
64, 5biimtrdi 253 . . . . 5 (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V)))
76imdistani 568 . . . 4 ((𝐺 ∈ V ∧ 𝐹(UPWalks‘𝐺)𝑃) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
8 3anass 1094 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
97, 8sylibr 234 . . 3 ((𝐺 ∈ V ∧ 𝐹(UPWalks‘𝐺)𝑃) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
109ex 412 . 2 (𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
11 fvprc 6832 . . 3 𝐺 ∈ V → (UPWalks‘𝐺) = ∅)
12 breq 5104 . . . 4 ((UPWalks‘𝐺) = ∅ → (𝐹(UPWalks‘𝐺)𝑃𝐹𝑃))
13 br0 5151 . . . . 5 ¬ 𝐹𝑃
1413pm2.21i 119 . . . 4 (𝐹𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
1512, 14biimtrdi 253 . . 3 ((UPWalks‘𝐺) = ∅ → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
1611, 15syl 17 . 2 𝐺 ∈ V → (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)))
1710, 16pm2.61i 182 1 (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  c0 4292  {cpr 4587   class class class wbr 5102  {copab 5164  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454  Vtxcvtx 28899  iEdgciedg 28900  UPWalkscupwlks 48094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-upwlks 48095
This theorem is referenced by:  upwlkwlk  48100
  Copyright terms: Public domain W3C validator