MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopab Structured version   Visualization version   GIF version

Theorem brfvopab 7213
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.)
Hypothesis
Ref Expression
brfvopab.1 (𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
brfvopab (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brfvopab
StepHypRef Expression
1 brfvopab.1 . . . . . . 7 (𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21breqd 5079 . . . . . 6 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵𝐴{⟨𝑦, 𝑧⟩ ∣ 𝜑}𝐵))
3 brabv 5455 . . . . . 6 (𝐴{⟨𝑦, 𝑧⟩ ∣ 𝜑}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
42, 3syl6bi 255 . . . . 5 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
54imdistani 571 . . . 4 ((𝑋 ∈ V ∧ 𝐴(𝐹𝑋)𝐵) → (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)))
6 3anass 1091 . . . 4 ((𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)))
75, 6sylibr 236 . . 3 ((𝑋 ∈ V ∧ 𝐴(𝐹𝑋)𝐵) → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
87ex 415 . 2 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
9 fvprc 6665 . . 3 𝑋 ∈ V → (𝐹𝑋) = ∅)
10 breq 5070 . . . 4 ((𝐹𝑋) = ∅ → (𝐴(𝐹𝑋)𝐵𝐴𝐵))
11 br0 5117 . . . . 5 ¬ 𝐴𝐵
1211pm2.21i 119 . . . 4 (𝐴𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
1310, 12syl6bi 255 . . 3 ((𝐹𝑋) = ∅ → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
149, 13syl 17 . 2 𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
158, 14pm2.61i 184 1 (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293   class class class wbr 5068  {copab 5130  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-iota 6316  df-fv 6365
This theorem is referenced by:  wlkprop  27395  wlkv  27396  isupwlkg  44019
  Copyright terms: Public domain W3C validator