MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopab Structured version   Visualization version   GIF version

Theorem brfvopab 7449
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.)
Hypothesis
Ref Expression
brfvopab.1 (𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
brfvopab (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brfvopab
StepHypRef Expression
1 brfvopab.1 . . . . . . 7 (𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21breqd 5121 . . . . . 6 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵𝐴{⟨𝑦, 𝑧⟩ ∣ 𝜑}𝐵))
3 brabv 5531 . . . . . 6 (𝐴{⟨𝑦, 𝑧⟩ ∣ 𝜑}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
42, 3biimtrdi 253 . . . . 5 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
54imdistani 568 . . . 4 ((𝑋 ∈ V ∧ 𝐴(𝐹𝑋)𝐵) → (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)))
6 3anass 1094 . . . 4 ((𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)))
75, 6sylibr 234 . . 3 ((𝑋 ∈ V ∧ 𝐴(𝐹𝑋)𝐵) → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
87ex 412 . 2 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
9 fvprc 6853 . . 3 𝑋 ∈ V → (𝐹𝑋) = ∅)
10 breq 5112 . . . 4 ((𝐹𝑋) = ∅ → (𝐴(𝐹𝑋)𝐵𝐴𝐵))
11 br0 5159 . . . . 5 ¬ 𝐴𝐵
1211pm2.21i 119 . . . 4 (𝐴𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
1310, 12biimtrdi 253 . . 3 ((𝐹𝑋) = ∅ → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
149, 13syl 17 . 2 𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
158, 14pm2.61i 182 1 (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299   class class class wbr 5110  {copab 5172  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-iota 6467  df-fv 6522
This theorem is referenced by:  wlkprop  29546  wlkv  29547  isupwlkg  48129
  Copyright terms: Public domain W3C validator