![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brfvopab | Structured version Visualization version GIF version |
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.) |
Ref | Expression |
---|---|
brfvopab.1 | ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Ref | Expression |
---|---|
brfvopab | ⊢ (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvopab.1 | . . . . . . 7 ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
2 | 1 | breqd 5153 | . . . . . 6 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 ↔ 𝐴{〈𝑦, 𝑧〉 ∣ 𝜑}𝐵)) |
3 | brabv 5565 | . . . . . 6 ⊢ (𝐴{〈𝑦, 𝑧〉 ∣ 𝜑}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | 2, 3 | biimtrdi 252 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
5 | 4 | imdistani 568 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝐴(𝐹‘𝑋)𝐵) → (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
6 | 3anass 1093 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V))) | |
7 | 5, 6 | sylibr 233 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝐴(𝐹‘𝑋)𝐵) → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | 7 | ex 412 | . 2 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
9 | fvprc 6883 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
10 | breq 5144 | . . . 4 ⊢ ((𝐹‘𝑋) = ∅ → (𝐴(𝐹‘𝑋)𝐵 ↔ 𝐴∅𝐵)) | |
11 | br0 5191 | . . . . 5 ⊢ ¬ 𝐴∅𝐵 | |
12 | 11 | pm2.21i 119 | . . . 4 ⊢ (𝐴∅𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 10, 12 | biimtrdi 252 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
14 | 9, 13 | syl 17 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
15 | 8, 14 | pm2.61i 182 | 1 ⊢ (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∅c0 4318 class class class wbr 5142 {copab 5204 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-iota 6494 df-fv 6550 |
This theorem is referenced by: wlkprop 29418 wlkv 29419 isupwlkg 47171 |
Copyright terms: Public domain | W3C validator |