| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brfvopab | Structured version Visualization version GIF version | ||
| Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.) |
| Ref | Expression |
|---|---|
| brfvopab.1 | ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {〈𝑦, 𝑧〉 ∣ 𝜑}) |
| Ref | Expression |
|---|---|
| brfvopab | ⊢ (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brfvopab.1 | . . . . . . 7 ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
| 2 | 1 | breqd 5134 | . . . . . 6 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 ↔ 𝐴{〈𝑦, 𝑧〉 ∣ 𝜑}𝐵)) |
| 3 | brabv 5553 | . . . . . 6 ⊢ (𝐴{〈𝑦, 𝑧〉 ∣ 𝜑}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | 2, 3 | biimtrdi 253 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 5 | 4 | imdistani 568 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝐴(𝐹‘𝑋)𝐵) → (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 6 | 3anass 1094 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V))) | |
| 7 | 5, 6 | sylibr 234 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝐴(𝐹‘𝑋)𝐵) → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 8 | 7 | ex 412 | . 2 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 9 | fvprc 6878 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 10 | breq 5125 | . . . 4 ⊢ ((𝐹‘𝑋) = ∅ → (𝐴(𝐹‘𝑋)𝐵 ↔ 𝐴∅𝐵)) | |
| 11 | br0 5172 | . . . . 5 ⊢ ¬ 𝐴∅𝐵 | |
| 12 | 11 | pm2.21i 119 | . . . 4 ⊢ (𝐴∅𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 13 | 10, 12 | biimtrdi 253 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 14 | 9, 13 | syl 17 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 15 | 8, 14 | pm2.61i 182 | 1 ⊢ (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 class class class wbr 5123 {copab 5185 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-iota 6494 df-fv 6549 |
| This theorem is referenced by: wlkprop 29558 wlkv 29559 isupwlkg 48026 |
| Copyright terms: Public domain | W3C validator |