MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopab Structured version   Visualization version   GIF version

Theorem brfvopab 7323
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.)
Hypothesis
Ref Expression
brfvopab.1 (𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Assertion
Ref Expression
brfvopab (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brfvopab
StepHypRef Expression
1 brfvopab.1 . . . . . . 7 (𝑋 ∈ V → (𝐹𝑋) = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
21breqd 5089 . . . . . 6 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵𝐴{⟨𝑦, 𝑧⟩ ∣ 𝜑}𝐵))
3 brabv 5481 . . . . . 6 (𝐴{⟨𝑦, 𝑧⟩ ∣ 𝜑}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
42, 3syl6bi 252 . . . . 5 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
54imdistani 568 . . . 4 ((𝑋 ∈ V ∧ 𝐴(𝐹𝑋)𝐵) → (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)))
6 3anass 1093 . . . 4 ((𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)))
75, 6sylibr 233 . . 3 ((𝑋 ∈ V ∧ 𝐴(𝐹𝑋)𝐵) → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
87ex 412 . 2 (𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
9 fvprc 6760 . . 3 𝑋 ∈ V → (𝐹𝑋) = ∅)
10 breq 5080 . . . 4 ((𝐹𝑋) = ∅ → (𝐴(𝐹𝑋)𝐵𝐴𝐵))
11 br0 5127 . . . . 5 ¬ 𝐴𝐵
1211pm2.21i 119 . . . 4 (𝐴𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
1310, 12syl6bi 252 . . 3 ((𝐹𝑋) = ∅ → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
149, 13syl 17 . 2 𝑋 ∈ V → (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)))
158, 14pm2.61i 182 1 (𝐴(𝐹𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  c0 4261   class class class wbr 5078  {copab 5140  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-iota 6388  df-fv 6438
This theorem is referenced by:  wlkprop  27959  wlkv  27960  isupwlkg  45251
  Copyright terms: Public domain W3C validator