![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brfvopab | Structured version Visualization version GIF version |
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.) |
Ref | Expression |
---|---|
brfvopab.1 | ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Ref | Expression |
---|---|
brfvopab | ⊢ (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvopab.1 | . . . . . . 7 ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
2 | 1 | breqd 5177 | . . . . . 6 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 ↔ 𝐴{〈𝑦, 𝑧〉 ∣ 𝜑}𝐵)) |
3 | brabv 5588 | . . . . . 6 ⊢ (𝐴{〈𝑦, 𝑧〉 ∣ 𝜑}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | 2, 3 | biimtrdi 253 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
5 | 4 | imdistani 568 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝐴(𝐹‘𝑋)𝐵) → (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
6 | 3anass 1095 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V))) | |
7 | 5, 6 | sylibr 234 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝐴(𝐹‘𝑋)𝐵) → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | 7 | ex 412 | . 2 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
9 | fvprc 6912 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
10 | breq 5168 | . . . 4 ⊢ ((𝐹‘𝑋) = ∅ → (𝐴(𝐹‘𝑋)𝐵 ↔ 𝐴∅𝐵)) | |
11 | br0 5215 | . . . . 5 ⊢ ¬ 𝐴∅𝐵 | |
12 | 11 | pm2.21i 119 | . . . 4 ⊢ (𝐴∅𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 10, 12 | biimtrdi 253 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
14 | 9, 13 | syl 17 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
15 | 8, 14 | pm2.61i 182 | 1 ⊢ (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 class class class wbr 5166 {copab 5228 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-iota 6525 df-fv 6581 |
This theorem is referenced by: wlkprop 29647 wlkv 29648 isupwlkg 47860 |
Copyright terms: Public domain | W3C validator |