![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brfvopab | Structured version Visualization version GIF version |
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021.) |
Ref | Expression |
---|---|
brfvopab.1 | ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Ref | Expression |
---|---|
brfvopab | ⊢ (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvopab.1 | . . . . . . 7 ⊢ (𝑋 ∈ V → (𝐹‘𝑋) = {〈𝑦, 𝑧〉 ∣ 𝜑}) | |
2 | 1 | breqd 4854 | . . . . . 6 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 ↔ 𝐴{〈𝑦, 𝑧〉 ∣ 𝜑}𝐵)) |
3 | brabv 6933 | . . . . . 6 ⊢ (𝐴{〈𝑦, 𝑧〉 ∣ 𝜑}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | 2, 3 | syl6bi 245 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
5 | 4 | imdistani 565 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝐴(𝐹‘𝑋)𝐵) → (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
6 | 3anass 1117 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝑋 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V))) | |
7 | 5, 6 | sylibr 226 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝐴(𝐹‘𝑋)𝐵) → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | 7 | ex 402 | . 2 ⊢ (𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
9 | fvprc 6404 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
10 | breq 4845 | . . . 4 ⊢ ((𝐹‘𝑋) = ∅ → (𝐴(𝐹‘𝑋)𝐵 ↔ 𝐴∅𝐵)) | |
11 | br0 4892 | . . . . 5 ⊢ ¬ 𝐴∅𝐵 | |
12 | 11 | pm2.21i 117 | . . . 4 ⊢ (𝐴∅𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 10, 12 | syl6bi 245 | . . 3 ⊢ ((𝐹‘𝑋) = ∅ → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
14 | 9, 13 | syl 17 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V))) |
15 | 8, 14 | pm2.61i 177 | 1 ⊢ (𝐴(𝐹‘𝑋)𝐵 → (𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∅c0 4115 class class class wbr 4843 {copab 4905 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-iota 6064 df-fv 6109 |
This theorem is referenced by: wlkprop 26861 wlkv 26862 isupwlkg 42517 |
Copyright terms: Public domain | W3C validator |