![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossincnvepres | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
br1cossincnvepres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossinres 38145 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐶)))) | |
2 | brcnvep 37963 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐵 ↔ 𝐵 ∈ 𝑢)) | |
3 | 2 | elv 3468 | . . . . 5 ⊢ (𝑢◡ E 𝐵 ↔ 𝐵 ∈ 𝑢) |
4 | 3 | anbi1i 622 | . . . 4 ⊢ ((𝑢◡ E 𝐵 ∧ 𝑢𝑅𝐵) ↔ (𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvep 37963 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢)) | |
6 | 5 | elv 3468 | . . . . 5 ⊢ (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢) |
7 | 6 | anbi1i 622 | . . . 4 ⊢ ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐶) ↔ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)) |
8 | 4, 7 | anbi12i 626 | . . 3 ⊢ (((𝑢◡ E 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶))) |
9 | 8 | rexbii 3084 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶))) |
10 | 1, 9 | bitrdi 286 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ∃wrex 3060 Vcvv 3462 ∩ cin 3946 class class class wbr 5153 E cep 5585 ◡ccnv 5681 ↾ cres 5684 ≀ ccoss 37876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-eprel 5586 df-xp 5688 df-rel 5689 df-cnv 5690 df-res 5694 df-coss 38109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |