Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossincnvepres Structured version   Visualization version   GIF version

Theorem br1cossincnvepres 38148
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossincnvepres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossincnvepres
StepHypRef Expression
1 br1cossinres 38145 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶))))
2 brcnvep 37963 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐵𝐵𝑢))
32elv 3468 . . . . 5 (𝑢 E 𝐵𝐵𝑢)
43anbi1i 622 . . . 4 ((𝑢 E 𝐵𝑢𝑅𝐵) ↔ (𝐵𝑢𝑢𝑅𝐵))
5 brcnvep 37963 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐶𝐶𝑢))
65elv 3468 . . . . 5 (𝑢 E 𝐶𝐶𝑢)
76anbi1i 622 . . . 4 ((𝑢 E 𝐶𝑢𝑅𝐶) ↔ (𝐶𝑢𝑢𝑅𝐶))
84, 7anbi12i 626 . . 3 (((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶)) ↔ ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶)))
98rexbii 3084 . 2 (∃𝑢𝐴 ((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶)) ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶)))
101, 9bitrdi 286 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099  wrex 3060  Vcvv 3462  cin 3946   class class class wbr 5153   E cep 5585  ccnv 5681  cres 5684  ccoss 37876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-eprel 5586  df-xp 5688  df-rel 5689  df-cnv 5690  df-res 5694  df-coss 38109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator