Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossincnvepres Structured version   Visualization version   GIF version

Theorem br1cossincnvepres 36495
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossincnvepres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossincnvepres
StepHypRef Expression
1 br1cossinres 36492 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶))))
2 brcnvep 36331 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐵𝐵𝑢))
32elv 3428 . . . . 5 (𝑢 E 𝐵𝐵𝑢)
43anbi1i 623 . . . 4 ((𝑢 E 𝐵𝑢𝑅𝐵) ↔ (𝐵𝑢𝑢𝑅𝐵))
5 brcnvep 36331 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐶𝐶𝑢))
65elv 3428 . . . . 5 (𝑢 E 𝐶𝐶𝑢)
76anbi1i 623 . . . 4 ((𝑢 E 𝐶𝑢𝑅𝐶) ↔ (𝐶𝑢𝑢𝑅𝐶))
84, 7anbi12i 626 . . 3 (((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶)) ↔ ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶)))
98rexbii 3177 . 2 (∃𝑢𝐴 ((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶)) ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶)))
101, 9bitrdi 286 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wrex 3064  Vcvv 3422  cin 3882   class class class wbr 5070   E cep 5485  ccnv 5579  cres 5582  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-res 5592  df-coss 36464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator