![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossincnvepres | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
br1cossincnvepres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossinres 38403 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐶)))) | |
2 | brcnvep 38221 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐵 ↔ 𝐵 ∈ 𝑢)) | |
3 | 2 | elv 3493 | . . . . 5 ⊢ (𝑢◡ E 𝐵 ↔ 𝐵 ∈ 𝑢) |
4 | 3 | anbi1i 623 | . . . 4 ⊢ ((𝑢◡ E 𝐵 ∧ 𝑢𝑅𝐵) ↔ (𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvep 38221 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢)) | |
6 | 5 | elv 3493 | . . . . 5 ⊢ (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢) |
7 | 6 | anbi1i 623 | . . . 4 ⊢ ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐶) ↔ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)) |
8 | 4, 7 | anbi12i 627 | . . 3 ⊢ (((𝑢◡ E 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶))) |
9 | 8 | rexbii 3100 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ (◡ E ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝐵 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 class class class wbr 5166 E cep 5598 ◡ccnv 5699 ↾ cres 5702 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-res 5712 df-coss 38367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |