Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossincnvepres Structured version   Visualization version   GIF version

Theorem br1cossincnvepres 36568
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossincnvepres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossincnvepres
StepHypRef Expression
1 br1cossinres 36565 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶))))
2 brcnvep 36404 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐵𝐵𝑢))
32elv 3438 . . . . 5 (𝑢 E 𝐵𝐵𝑢)
43anbi1i 624 . . . 4 ((𝑢 E 𝐵𝑢𝑅𝐵) ↔ (𝐵𝑢𝑢𝑅𝐵))
5 brcnvep 36404 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐶𝐶𝑢))
65elv 3438 . . . . 5 (𝑢 E 𝐶𝐶𝑢)
76anbi1i 624 . . . 4 ((𝑢 E 𝐶𝑢𝑅𝐶) ↔ (𝐶𝑢𝑢𝑅𝐶))
84, 7anbi12i 627 . . 3 (((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶)) ↔ ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶)))
98rexbii 3181 . 2 (∃𝑢𝐴 ((𝑢 E 𝐵𝑢𝑅𝐵) ∧ (𝑢 E 𝐶𝑢𝑅𝐶)) ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶)))
101, 9bitrdi 287 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( E ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝐵𝑢𝑢𝑅𝐵) ∧ (𝐶𝑢𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wrex 3065  Vcvv 3432  cin 3886   class class class wbr 5074   E cep 5494  ccnv 5588  cres 5591  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-res 5601  df-coss 36537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator