Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov Structured version   Visualization version   GIF version

Theorem legov 26478
 Description: Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Distinct variable groups:   𝑧,   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐼   𝑧,𝑃   𝑧,𝐺   𝜑,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem legov
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
61, 2, 3, 4, 5legval 26477 . . . 4 (𝜑 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
76breqd 5043 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ (𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷)))
8 ovex 7183 . . . 4 (𝐴 𝐵) ∈ V
9 ovex 7183 . . . 4 (𝐶 𝐷) ∈ V
10 simpr 488 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑓 = (𝐶 𝐷))
1110eqeq1d 2760 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑓 = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
12 simpl 486 . . . . . . . . 9 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑒 = (𝐴 𝐵))
1312eqeq1d 2760 . . . . . . . 8 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑒 = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
1413anbi2d 631 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1514rexbidv 3221 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1611, 15anbi12d 633 . . . . 5 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
17162rexbidv 3224 . . . 4 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
18 eqid 2758 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))}
198, 9, 17, 18braba 5394 . . 3 ((𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
207, 19bitrdi 290 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
21 anass 472 . . . . . . . 8 (((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ (((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))))
2221anbi1i 626 . . . . . . 7 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ↔ ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃))
23 eqid 2758 . . . . . . . . . . 11 (cgrG‘𝐺) = (cgrG‘𝐺)
245ad5antr 733 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐺 ∈ TarskiG)
2524adantr 484 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐺 ∈ TarskiG)
26 simp-5r 785 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑐𝑃)
2726adantr 484 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑐𝑃)
28 simpllr 775 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥𝑃)
29 simp-4r 783 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑑𝑃)
3029adantr 484 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑑𝑃)
31 legov.c . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
3231ad5antr 733 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐶𝑃)
3332adantr 484 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐶𝑃)
34 simprl 770 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧𝑃)
35 legov.d . . . . . . . . . . . . 13 (𝜑𝐷𝑃)
3635ad5antr 733 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐷𝑃)
3736adantr 484 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐷𝑃)
38 simprr 772 . . . . . . . . . . . 12 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
391, 2, 3, 23, 25, 27, 30, 28, 33, 37, 34, 38cgr3swap23 26417 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑥𝑑”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
40 simprl 770 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥 ∈ (𝑐𝐼𝑑))
4140adantr 484 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥 ∈ (𝑐𝐼𝑑))
421, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39, 41tgbtwnxfr 26423 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧 ∈ (𝐶𝐼𝐷))
43 simplrr 777 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝑐 𝑥))
441, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39cgr3simp1 26413 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑐 𝑥) = (𝐶 𝑧))
4543, 44eqtrd 2793 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝐶 𝑧))
4642, 45jca 515 . . . . . . . . 9 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
47 eqid 2758 . . . . . . . . . 10 (LineG‘𝐺) = (LineG‘𝐺)
48 simplr 768 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥𝑃)
491, 47, 3, 24, 26, 48, 29, 40btwncolg3 26450 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑑 ∈ (𝑐(LineG‘𝐺)𝑥) ∨ 𝑐 = 𝑥))
50 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝐶 𝐷) = (𝑐 𝑑))
5150eqcomd 2764 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑐 𝑑) = (𝐶 𝐷))
521, 47, 3, 24, 26, 29, 48, 23, 32, 36, 2, 49, 51lnext 26460 . . . . . . . . 9 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
5346, 52reximddv 3199 . . . . . . . 8 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5453adantllr 718 . . . . . . 7 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5522, 54sylanbr 585 . . . . . 6 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
56 simprr 772 . . . . . . 7 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
57 eleq1w 2834 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑐𝐼𝑑)))
58 oveq2 7158 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑐 𝑥) = (𝑐 𝑧))
5958eqeq2d 2769 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 𝐵) = (𝑐 𝑥) ↔ (𝐴 𝐵) = (𝑐 𝑧)))
6057, 59anbi12d 633 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
6160cbvrexvw 3362 . . . . . . 7 (∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
6256, 61sylibr 237 . . . . . 6 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)))
6355, 62r19.29a 3213 . . . . 5 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
6463adantl3r 749 . . . 4 (((((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
65 simpr 488 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
66 oveq1 7157 . . . . . . . 8 (𝑐 = 𝑥 → (𝑐 𝑑) = (𝑥 𝑑))
6766eqeq2d 2769 . . . . . . 7 (𝑐 = 𝑥 → ((𝐶 𝐷) = (𝑐 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑑)))
68 oveq1 7157 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝐼𝑑) = (𝑥𝐼𝑑))
6968eleq2d 2837 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑧 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑑)))
70 oveq1 7157 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐 𝑧) = (𝑥 𝑧))
7170eqeq2d 2769 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐴 𝐵) = (𝑐 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
7269, 71anbi12d 633 . . . . . . . 8 (𝑐 = 𝑥 → ((𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7372rexbidv 3221 . . . . . . 7 (𝑐 = 𝑥 → (∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7467, 73anbi12d 633 . . . . . 6 (𝑐 = 𝑥 → (((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
75 oveq2 7158 . . . . . . . 8 (𝑑 = 𝑦 → (𝑥 𝑑) = (𝑥 𝑦))
7675eqeq2d 2769 . . . . . . 7 (𝑑 = 𝑦 → ((𝐶 𝐷) = (𝑥 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
77 oveq2 7158 . . . . . . . . . 10 (𝑑 = 𝑦 → (𝑥𝐼𝑑) = (𝑥𝐼𝑦))
7877eleq2d 2837 . . . . . . . . 9 (𝑑 = 𝑦 → (𝑧 ∈ (𝑥𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑦)))
7978anbi1d 632 . . . . . . . 8 (𝑑 = 𝑦 → ((𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8079rexbidv 3221 . . . . . . 7 (𝑑 = 𝑦 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8176, 80anbi12d 633 . . . . . 6 (𝑑 = 𝑦 → (((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
8274, 81cbvrex2vw 3374 . . . . 5 (∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8365, 82sylibr 237 . . . 4 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
8464, 83r19.29vva 3257 . . 3 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
8531adantr 484 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
8635adantr 484 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
87 eqidd 2759 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝐷) = (𝐶 𝐷))
88 simpr 488 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
89 oveq1 7157 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 𝑦) = (𝐶 𝑦))
9089eqeq2d 2769 . . . . . 6 (𝑥 = 𝐶 → ((𝐶 𝐷) = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝑦)))
91 oveq1 7157 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐼𝑦) = (𝐶𝐼𝑦))
9291eleq2d 2837 . . . . . . . 8 (𝑥 = 𝐶 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝑦)))
93 oveq1 7157 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥 𝑧) = (𝐶 𝑧))
9493eqeq2d 2769 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 𝐵) = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
9592, 94anbi12d 633 . . . . . . 7 (𝑥 = 𝐶 → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9695rexbidv 3221 . . . . . 6 (𝑥 = 𝐶 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9790, 96anbi12d 633 . . . . 5 (𝑥 = 𝐶 → (((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
98 oveq2 7158 . . . . . . 7 (𝑦 = 𝐷 → (𝐶 𝑦) = (𝐶 𝐷))
9998eqeq2d 2769 . . . . . 6 (𝑦 = 𝐷 → ((𝐶 𝐷) = (𝐶 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝐷)))
100 oveq2 7158 . . . . . . . . 9 (𝑦 = 𝐷 → (𝐶𝐼𝑦) = (𝐶𝐼𝐷))
101100eleq2d 2837 . . . . . . . 8 (𝑦 = 𝐷 → (𝑧 ∈ (𝐶𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
102101anbi1d 632 . . . . . . 7 (𝑦 = 𝐷 → ((𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
103102rexbidv 3221 . . . . . 6 (𝑦 = 𝐷 → (∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10499, 103anbi12d 633 . . . . 5 (𝑦 = 𝐷 → (((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
10597, 104rspc2ev 3553 . . . 4 ((𝐶𝑃𝐷𝑃 ∧ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10685, 86, 87, 88, 105syl112anc 1371 . . 3 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10784, 106impbida 800 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10820, 107bitrd 282 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃wrex 3071   class class class wbr 5032  {copab 5094  ‘cfv 6335  (class class class)co 7150  ⟨“cs3 14251  Basecbs 16541  distcds 16632  TarskiGcstrkg 26323  Itvcitv 26329  LineGclng 26330  cgrGccgrg 26403  ≤Gcleg 26475 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-oadd 8116  df-er 8299  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-dju 9363  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-xnn0 12007  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-concat 13970  df-s1 13997  df-s2 14257  df-s3 14258  df-trkgc 26341  df-trkgb 26342  df-trkgcb 26343  df-trkg 26346  df-cgrg 26404  df-leg 26476 This theorem is referenced by:  legov2  26479  legid  26480  btwnleg  26481  legtrd  26482  legtri3  26483  legtrid  26484  leg0  26485  mideulem  26629  opphllem3  26642
 Copyright terms: Public domain W3C validator