MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov Structured version   Visualization version   GIF version

Theorem legov 26946
Description: Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Distinct variable groups:   𝑧,   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐼   𝑧,𝑃   𝑧,𝐺   𝜑,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem legov
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
61, 2, 3, 4, 5legval 26945 . . . 4 (𝜑 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
76breqd 5085 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ (𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷)))
8 ovex 7308 . . . 4 (𝐴 𝐵) ∈ V
9 ovex 7308 . . . 4 (𝐶 𝐷) ∈ V
10 simpr 485 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑓 = (𝐶 𝐷))
1110eqeq1d 2740 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑓 = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
12 simpl 483 . . . . . . . . 9 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑒 = (𝐴 𝐵))
1312eqeq1d 2740 . . . . . . . 8 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑒 = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
1413anbi2d 629 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1514rexbidv 3226 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1611, 15anbi12d 631 . . . . 5 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
17162rexbidv 3229 . . . 4 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
18 eqid 2738 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))}
198, 9, 17, 18braba 5450 . . 3 ((𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
207, 19bitrdi 287 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
21 anass 469 . . . . . . . 8 (((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ (((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))))
2221anbi1i 624 . . . . . . 7 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ↔ ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃))
23 eqid 2738 . . . . . . . . . . 11 (cgrG‘𝐺) = (cgrG‘𝐺)
245ad5antr 731 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐺 ∈ TarskiG)
2524adantr 481 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐺 ∈ TarskiG)
26 simp-5r 783 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑐𝑃)
2726adantr 481 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑐𝑃)
28 simpllr 773 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥𝑃)
29 simp-4r 781 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑑𝑃)
3029adantr 481 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑑𝑃)
31 legov.c . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
3231ad5antr 731 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐶𝑃)
3332adantr 481 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐶𝑃)
34 simprl 768 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧𝑃)
35 legov.d . . . . . . . . . . . . 13 (𝜑𝐷𝑃)
3635ad5antr 731 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐷𝑃)
3736adantr 481 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐷𝑃)
38 simprr 770 . . . . . . . . . . . 12 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
391, 2, 3, 23, 25, 27, 30, 28, 33, 37, 34, 38cgr3swap23 26885 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑥𝑑”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
40 simprl 768 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥 ∈ (𝑐𝐼𝑑))
4140adantr 481 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥 ∈ (𝑐𝐼𝑑))
421, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39, 41tgbtwnxfr 26891 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧 ∈ (𝐶𝐼𝐷))
43 simplrr 775 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝑐 𝑥))
441, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39cgr3simp1 26881 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑐 𝑥) = (𝐶 𝑧))
4543, 44eqtrd 2778 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝐶 𝑧))
4642, 45jca 512 . . . . . . . . 9 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
47 eqid 2738 . . . . . . . . . 10 (LineG‘𝐺) = (LineG‘𝐺)
48 simplr 766 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥𝑃)
491, 47, 3, 24, 26, 48, 29, 40btwncolg3 26918 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑑 ∈ (𝑐(LineG‘𝐺)𝑥) ∨ 𝑐 = 𝑥))
50 simpllr 773 . . . . . . . . . . 11 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝐶 𝐷) = (𝑐 𝑑))
5150eqcomd 2744 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑐 𝑑) = (𝐶 𝐷))
521, 47, 3, 24, 26, 29, 48, 23, 32, 36, 2, 49, 51lnext 26928 . . . . . . . . 9 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
5346, 52reximddv 3204 . . . . . . . 8 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5453adantllr 716 . . . . . . 7 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5522, 54sylanbr 582 . . . . . 6 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
56 simprr 770 . . . . . . 7 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
57 eleq1w 2821 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑐𝐼𝑑)))
58 oveq2 7283 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑐 𝑥) = (𝑐 𝑧))
5958eqeq2d 2749 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 𝐵) = (𝑐 𝑥) ↔ (𝐴 𝐵) = (𝑐 𝑧)))
6057, 59anbi12d 631 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
6160cbvrexvw 3384 . . . . . . 7 (∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
6256, 61sylibr 233 . . . . . 6 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)))
6355, 62r19.29a 3218 . . . . 5 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
6463adantl3r 747 . . . 4 (((((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
65 simpr 485 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
66 oveq1 7282 . . . . . . . 8 (𝑐 = 𝑥 → (𝑐 𝑑) = (𝑥 𝑑))
6766eqeq2d 2749 . . . . . . 7 (𝑐 = 𝑥 → ((𝐶 𝐷) = (𝑐 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑑)))
68 oveq1 7282 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝐼𝑑) = (𝑥𝐼𝑑))
6968eleq2d 2824 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑧 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑑)))
70 oveq1 7282 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐 𝑧) = (𝑥 𝑧))
7170eqeq2d 2749 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐴 𝐵) = (𝑐 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
7269, 71anbi12d 631 . . . . . . . 8 (𝑐 = 𝑥 → ((𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7372rexbidv 3226 . . . . . . 7 (𝑐 = 𝑥 → (∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7467, 73anbi12d 631 . . . . . 6 (𝑐 = 𝑥 → (((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
75 oveq2 7283 . . . . . . . 8 (𝑑 = 𝑦 → (𝑥 𝑑) = (𝑥 𝑦))
7675eqeq2d 2749 . . . . . . 7 (𝑑 = 𝑦 → ((𝐶 𝐷) = (𝑥 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
77 oveq2 7283 . . . . . . . . . 10 (𝑑 = 𝑦 → (𝑥𝐼𝑑) = (𝑥𝐼𝑦))
7877eleq2d 2824 . . . . . . . . 9 (𝑑 = 𝑦 → (𝑧 ∈ (𝑥𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑦)))
7978anbi1d 630 . . . . . . . 8 (𝑑 = 𝑦 → ((𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8079rexbidv 3226 . . . . . . 7 (𝑑 = 𝑦 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8176, 80anbi12d 631 . . . . . 6 (𝑑 = 𝑦 → (((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
8274, 81cbvrex2vw 3397 . . . . 5 (∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8365, 82sylibr 233 . . . 4 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
8464, 83r19.29vva 3266 . . 3 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
8531adantr 481 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
8635adantr 481 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
87 eqidd 2739 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝐷) = (𝐶 𝐷))
88 simpr 485 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
89 oveq1 7282 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 𝑦) = (𝐶 𝑦))
9089eqeq2d 2749 . . . . . 6 (𝑥 = 𝐶 → ((𝐶 𝐷) = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝑦)))
91 oveq1 7282 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐼𝑦) = (𝐶𝐼𝑦))
9291eleq2d 2824 . . . . . . . 8 (𝑥 = 𝐶 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝑦)))
93 oveq1 7282 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥 𝑧) = (𝐶 𝑧))
9493eqeq2d 2749 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 𝐵) = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
9592, 94anbi12d 631 . . . . . . 7 (𝑥 = 𝐶 → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9695rexbidv 3226 . . . . . 6 (𝑥 = 𝐶 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9790, 96anbi12d 631 . . . . 5 (𝑥 = 𝐶 → (((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
98 oveq2 7283 . . . . . . 7 (𝑦 = 𝐷 → (𝐶 𝑦) = (𝐶 𝐷))
9998eqeq2d 2749 . . . . . 6 (𝑦 = 𝐷 → ((𝐶 𝐷) = (𝐶 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝐷)))
100 oveq2 7283 . . . . . . . . 9 (𝑦 = 𝐷 → (𝐶𝐼𝑦) = (𝐶𝐼𝐷))
101100eleq2d 2824 . . . . . . . 8 (𝑦 = 𝐷 → (𝑧 ∈ (𝐶𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
102101anbi1d 630 . . . . . . 7 (𝑦 = 𝐷 → ((𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
103102rexbidv 3226 . . . . . 6 (𝑦 = 𝐷 → (∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10499, 103anbi12d 631 . . . . 5 (𝑦 = 𝐷 → (((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
10597, 104rspc2ev 3572 . . . 4 ((𝐶𝑃𝐷𝑃 ∧ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10685, 86, 87, 88, 105syl112anc 1373 . . 3 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10784, 106impbida 798 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10820, 107bitrd 278 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  {copab 5136  cfv 6433  (class class class)co 7275  ⟨“cs3 14555  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  cgrGccgrg 26871  ≤Gcleg 26943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-cgrg 26872  df-leg 26944
This theorem is referenced by:  legov2  26947  legid  26948  btwnleg  26949  legtrd  26950  legtri3  26951  legtrid  26952  leg0  26953  mideulem  27097  opphllem3  27110
  Copyright terms: Public domain W3C validator