MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov Structured version   Visualization version   GIF version

Theorem legov 28409
Description: Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Distinct variable groups:   𝑧,   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑧,𝐼   𝑧,𝑃   𝑧,𝐺   𝜑,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem legov
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
61, 2, 3, 4, 5legval 28408 . . . 4 (𝜑 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
76breqd 5163 . . 3 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ (𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷)))
8 ovex 7459 . . . 4 (𝐴 𝐵) ∈ V
9 ovex 7459 . . . 4 (𝐶 𝐷) ∈ V
10 simpr 483 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑓 = (𝐶 𝐷))
1110eqeq1d 2730 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑓 = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
12 simpl 481 . . . . . . . . 9 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → 𝑒 = (𝐴 𝐵))
1312eqeq1d 2730 . . . . . . . 8 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (𝑒 = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
1413anbi2d 628 . . . . . . 7 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1514rexbidv 3176 . . . . . 6 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
1611, 15anbi12d 630 . . . . 5 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → ((𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
17162rexbidv 3217 . . . 4 ((𝑒 = (𝐴 𝐵) ∧ 𝑓 = (𝐶 𝐷)) → (∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
18 eqid 2728 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))}
198, 9, 17, 18braba 5543 . . 3 ((𝐴 𝐵){⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
207, 19bitrdi 286 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
21 anass 467 . . . . . . . 8 (((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ (((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))))
2221anbi1i 622 . . . . . . 7 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ↔ ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃))
23 eqid 2728 . . . . . . . . . . 11 (cgrG‘𝐺) = (cgrG‘𝐺)
245ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐺 ∈ TarskiG)
2524adantr 479 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐺 ∈ TarskiG)
26 simp-5r 784 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑐𝑃)
2726adantr 479 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑐𝑃)
28 simpllr 774 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥𝑃)
29 simp-4r 782 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑑𝑃)
3029adantr 479 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑑𝑃)
31 legov.c . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
3231ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐶𝑃)
3332adantr 479 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐶𝑃)
34 simprl 769 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧𝑃)
35 legov.d . . . . . . . . . . . . 13 (𝜑𝐷𝑃)
3635ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝐷𝑃)
3736adantr 479 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝐷𝑃)
38 simprr 771 . . . . . . . . . . . 12 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
391, 2, 3, 23, 25, 27, 30, 28, 33, 37, 34, 38cgr3swap23 28348 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → ⟨“𝑐𝑥𝑑”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
40 simprl 769 . . . . . . . . . . . 12 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥 ∈ (𝑐𝐼𝑑))
4140adantr 479 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑥 ∈ (𝑐𝐼𝑑))
421, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39, 41tgbtwnxfr 28354 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → 𝑧 ∈ (𝐶𝐼𝐷))
43 simplrr 776 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝑐 𝑥))
441, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39cgr3simp1 28344 . . . . . . . . . . 11 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑐 𝑥) = (𝐶 𝑧))
4543, 44eqtrd 2768 . . . . . . . . . 10 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝐴 𝐵) = (𝐶 𝑧))
4642, 45jca 510 . . . . . . . . 9 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) ∧ (𝑧𝑃 ∧ ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
47 eqid 2728 . . . . . . . . . 10 (LineG‘𝐺) = (LineG‘𝐺)
48 simplr 767 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → 𝑥𝑃)
491, 47, 3, 24, 26, 48, 29, 40btwncolg3 28381 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑑 ∈ (𝑐(LineG‘𝐺)𝑥) ∨ 𝑐 = 𝑥))
50 simpllr 774 . . . . . . . . . . 11 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝐶 𝐷) = (𝑐 𝑑))
5150eqcomd 2734 . . . . . . . . . 10 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → (𝑐 𝑑) = (𝐶 𝐷))
521, 47, 3, 24, 26, 29, 48, 23, 32, 36, 2, 49, 51lnext 28391 . . . . . . . . 9 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 ⟨“𝑐𝑑𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑧”⟩)
5346, 52reximddv 3168 . . . . . . . 8 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5453adantllr 717 . . . . . . 7 (((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ (𝐶 𝐷) = (𝑐 𝑑)) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5522, 54sylanbr 580 . . . . . 6 ((((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
56 simprr 771 . . . . . . 7 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
57 eleq1w 2812 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑐𝐼𝑑)))
58 oveq2 7434 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑐 𝑥) = (𝑐 𝑧))
5958eqeq2d 2739 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 𝐵) = (𝑐 𝑥) ↔ (𝐴 𝐵) = (𝑐 𝑧)))
6057, 59anbi12d 630 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
6160cbvrexvw 3233 . . . . . . 7 (∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))
6256, 61sylibr 233 . . . . . 6 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑥𝑃 (𝑥 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑥)))
6355, 62r19.29a 3159 . . . . 5 ((((𝜑𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
6463adantl3r 748 . . . 4 (((((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
65 simpr 483 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
66 oveq1 7433 . . . . . . . 8 (𝑐 = 𝑥 → (𝑐 𝑑) = (𝑥 𝑑))
6766eqeq2d 2739 . . . . . . 7 (𝑐 = 𝑥 → ((𝐶 𝐷) = (𝑐 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑑)))
68 oveq1 7433 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝐼𝑑) = (𝑥𝐼𝑑))
6968eleq2d 2815 . . . . . . . . 9 (𝑐 = 𝑥 → (𝑧 ∈ (𝑐𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑑)))
70 oveq1 7433 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐 𝑧) = (𝑥 𝑧))
7170eqeq2d 2739 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐴 𝐵) = (𝑐 𝑧) ↔ (𝐴 𝐵) = (𝑥 𝑧)))
7269, 71anbi12d 630 . . . . . . . 8 (𝑐 = 𝑥 → ((𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7372rexbidv 3176 . . . . . . 7 (𝑐 = 𝑥 → (∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
7467, 73anbi12d 630 . . . . . 6 (𝑐 = 𝑥 → (((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
75 oveq2 7434 . . . . . . . 8 (𝑑 = 𝑦 → (𝑥 𝑑) = (𝑥 𝑦))
7675eqeq2d 2739 . . . . . . 7 (𝑑 = 𝑦 → ((𝐶 𝐷) = (𝑥 𝑑) ↔ (𝐶 𝐷) = (𝑥 𝑦)))
77 oveq2 7434 . . . . . . . . . 10 (𝑑 = 𝑦 → (𝑥𝐼𝑑) = (𝑥𝐼𝑦))
7877eleq2d 2815 . . . . . . . . 9 (𝑑 = 𝑦 → (𝑧 ∈ (𝑥𝐼𝑑) ↔ 𝑧 ∈ (𝑥𝐼𝑦)))
7978anbi1d 629 . . . . . . . 8 (𝑑 = 𝑦 → ((𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8079rexbidv 3176 . . . . . . 7 (𝑑 = 𝑦 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8176, 80anbi12d 630 . . . . . 6 (𝑑 = 𝑦 → (((𝐶 𝐷) = (𝑥 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑑) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))))
8274, 81cbvrex2vw 3237 . . . . 5 (∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
8365, 82sylibr 233 . . . 4 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑐𝑃𝑑𝑃 ((𝐶 𝐷) = (𝑐 𝑑) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑐𝐼𝑑) ∧ (𝐴 𝐵) = (𝑐 𝑧))))
8464, 83r19.29vva 3211 . . 3 ((𝜑 ∧ ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
8531adantr 479 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
8635adantr 479 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
87 eqidd 2729 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝐷) = (𝐶 𝐷))
88 simpr 483 . . . 4 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
89 oveq1 7433 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 𝑦) = (𝐶 𝑦))
9089eqeq2d 2739 . . . . . 6 (𝑥 = 𝐶 → ((𝐶 𝐷) = (𝑥 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝑦)))
91 oveq1 7433 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐼𝑦) = (𝐶𝐼𝑦))
9291eleq2d 2815 . . . . . . . 8 (𝑥 = 𝐶 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝑦)))
93 oveq1 7433 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥 𝑧) = (𝐶 𝑧))
9493eqeq2d 2739 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 𝐵) = (𝑥 𝑧) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
9592, 94anbi12d 630 . . . . . . 7 (𝑥 = 𝐶 → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9695rexbidv 3176 . . . . . 6 (𝑥 = 𝐶 → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
9790, 96anbi12d 630 . . . . 5 (𝑥 = 𝐶 → (((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
98 oveq2 7434 . . . . . . 7 (𝑦 = 𝐷 → (𝐶 𝑦) = (𝐶 𝐷))
9998eqeq2d 2739 . . . . . 6 (𝑦 = 𝐷 → ((𝐶 𝐷) = (𝐶 𝑦) ↔ (𝐶 𝐷) = (𝐶 𝐷)))
100 oveq2 7434 . . . . . . . . 9 (𝑦 = 𝐷 → (𝐶𝐼𝑦) = (𝐶𝐼𝐷))
101100eleq2d 2815 . . . . . . . 8 (𝑦 = 𝐷 → (𝑧 ∈ (𝐶𝐼𝑦) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
102101anbi1d 629 . . . . . . 7 (𝑦 = 𝐷 → ((𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
103102rexbidv 3176 . . . . . 6 (𝑦 = 𝐷 → (∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10499, 103anbi12d 630 . . . . 5 (𝑦 = 𝐷 → (((𝐶 𝐷) = (𝐶 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝑦) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ↔ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))))
10597, 104rspc2ev 3624 . . . 4 ((𝐶𝑃𝐷𝑃 ∧ ((𝐶 𝐷) = (𝐶 𝐷) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10685, 86, 87, 88, 105syl112anc 1371 . . 3 ((𝜑 ∧ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))))
10784, 106impbida 799 . 2 (𝜑 → (∃𝑥𝑃𝑦𝑃 ((𝐶 𝐷) = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝐵) = (𝑥 𝑧))) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
10820, 107bitrd 278 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3067   class class class wbr 5152  {copab 5214  cfv 6553  (class class class)co 7426  ⟨“cs3 14833  Basecbs 17187  distcds 17249  TarskiGcstrkg 28251  Itvcitv 28257  LineGclng 28258  cgrGccgrg 28334  ≤Gcleg 28406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-concat 14561  df-s1 14586  df-s2 14839  df-s3 14840  df-trkgc 28272  df-trkgb 28273  df-trkgcb 28274  df-trkg 28277  df-cgrg 28335  df-leg 28407
This theorem is referenced by:  legov2  28410  legid  28411  btwnleg  28412  legtrd  28413  legtri3  28414  legtrid  28415  leg0  28416  mideulem  28560  opphllem3  28573
  Copyright terms: Public domain W3C validator