|   | Mathbox for Stefan O'Rear | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2val | Structured version Visualization version GIF version | ||
| Description: Lemma for fnwe2 43070. Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | 
| fnwe2.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} | 
| Ref | Expression | 
|---|---|
| fnwe2val | ⊢ (𝑎𝑇𝑏 ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 3483 | . 2 ⊢ 𝑎 ∈ V | |
| 2 | vex 3483 | . 2 ⊢ 𝑏 ∈ V | |
| 3 | fveq2 6905 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
| 4 | fveq2 6905 | . . . 4 ⊢ (𝑦 = 𝑏 → (𝐹‘𝑦) = (𝐹‘𝑏)) | |
| 5 | 3, 4 | breqan12d 5158 | . . 3 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ↔ (𝐹‘𝑎)𝑅(𝐹‘𝑏))) | 
| 6 | 3, 4 | eqeqan12d 2750 | . . . 4 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) | 
| 7 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑥 = 𝑎) | |
| 8 | fvex 6918 | . . . . . . . 8 ⊢ (𝐹‘𝑥) ∈ V | |
| 9 | fnwe2.su | . . . . . . . 8 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
| 10 | 8, 9 | csbie 3933 | . . . . . . 7 ⊢ ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = 𝑈 | 
| 11 | 3 | csbeq1d 3902 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑎) / 𝑧⦌𝑆) | 
| 12 | 10, 11 | eqtr3id 2790 | . . . . . 6 ⊢ (𝑥 = 𝑎 → 𝑈 = ⦋(𝐹‘𝑎) / 𝑧⦌𝑆) | 
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑈 = ⦋(𝐹‘𝑎) / 𝑧⦌𝑆) | 
| 14 | simpr 484 | . . . . 5 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑦 = 𝑏) | |
| 15 | 7, 13, 14 | breq123d 5156 | . . . 4 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥𝑈𝑦 ↔ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏)) | 
| 16 | 6, 15 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦) ↔ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) | 
| 17 | 5, 16 | orbi12d 918 | . 2 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦)) ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏)))) | 
| 18 | fnwe2.t | . 2 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} | |
| 19 | 1, 2, 17, 18 | braba 5541 | 1 ⊢ (𝑎𝑇𝑏 ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ⦋csb 3898 class class class wbr 5142 {copab 5204 ‘cfv 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-iota 6513 df-fv 6568 | 
| This theorem is referenced by: fnwe2lem2 43068 fnwe2lem3 43069 | 
| Copyright terms: Public domain | W3C validator |