Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2val Structured version   Visualization version   GIF version

Theorem fnwe2val 41776
Description: Lemma for fnwe2 41780. Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
Assertion
Ref Expression
fnwe2val (𝑎𝑇𝑏 ↔ ((𝐹𝑎)𝑅(𝐹𝑏) ∨ ((𝐹𝑎) = (𝐹𝑏) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏)))
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎,𝑏   𝑥,𝑆,𝑦,𝑎,𝑏   𝑥,𝑅,𝑦,𝑎,𝑏   𝑥,𝑧,𝐹,𝑦,𝑎,𝑏   𝑇,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2val
StepHypRef Expression
1 vex 3478 . 2 𝑎 ∈ V
2 vex 3478 . 2 𝑏 ∈ V
3 fveq2 6888 . . . 4 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
4 fveq2 6888 . . . 4 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
53, 4breqan12d 5163 . . 3 ((𝑥 = 𝑎𝑦 = 𝑏) → ((𝐹𝑥)𝑅(𝐹𝑦) ↔ (𝐹𝑎)𝑅(𝐹𝑏)))
63, 4eqeqan12d 2746 . . . 4 ((𝑥 = 𝑎𝑦 = 𝑏) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑎) = (𝐹𝑏)))
7 simpl 483 . . . . 5 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
8 fvex 6901 . . . . . . . 8 (𝐹𝑥) ∈ V
9 fnwe2.su . . . . . . . 8 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
108, 9csbie 3928 . . . . . . 7 (𝐹𝑥) / 𝑧𝑆 = 𝑈
113csbeq1d 3896 . . . . . . 7 (𝑥 = 𝑎(𝐹𝑥) / 𝑧𝑆 = (𝐹𝑎) / 𝑧𝑆)
1210, 11eqtr3id 2786 . . . . . 6 (𝑥 = 𝑎𝑈 = (𝐹𝑎) / 𝑧𝑆)
1312adantr 481 . . . . 5 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑈 = (𝐹𝑎) / 𝑧𝑆)
14 simpr 485 . . . . 5 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑦 = 𝑏)
157, 13, 14breq123d 5161 . . . 4 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑈𝑦𝑎(𝐹𝑎) / 𝑧𝑆𝑏))
166, 15anbi12d 631 . . 3 ((𝑥 = 𝑎𝑦 = 𝑏) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦) ↔ ((𝐹𝑎) = (𝐹𝑏) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏)))
175, 16orbi12d 917 . 2 ((𝑥 = 𝑎𝑦 = 𝑏) → (((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦)) ↔ ((𝐹𝑎)𝑅(𝐹𝑏) ∨ ((𝐹𝑎) = (𝐹𝑏) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏))))
18 fnwe2.t . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
191, 2, 17, 18braba 5536 1 (𝑎𝑇𝑏 ↔ ((𝐹𝑎)𝑅(𝐹𝑏) ∨ ((𝐹𝑎) = (𝐹𝑏) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  csb 3892   class class class wbr 5147  {copab 5209  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-iota 6492  df-fv 6548
This theorem is referenced by:  fnwe2lem2  41778  fnwe2lem3  41779
  Copyright terms: Public domain W3C validator