![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnwe2val | Structured version Visualization version GIF version |
Description: Lemma for fnwe2 38461. Substitute variables. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
Ref | Expression |
---|---|
fnwe2.su | ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
fnwe2.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
Ref | Expression |
---|---|
fnwe2val | ⊢ (𝑎𝑇𝑏 ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3417 | . 2 ⊢ 𝑎 ∈ V | |
2 | vex 3417 | . 2 ⊢ 𝑏 ∈ V | |
3 | fveq2 6437 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
4 | fveq2 6437 | . . . 4 ⊢ (𝑦 = 𝑏 → (𝐹‘𝑦) = (𝐹‘𝑏)) | |
5 | 3, 4 | breqan12d 4891 | . . 3 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ↔ (𝐹‘𝑎)𝑅(𝐹‘𝑏))) |
6 | 3, 4 | eqeqan12d 2841 | . . . 4 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
7 | simpl 476 | . . . . 5 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑥 = 𝑎) | |
8 | fvex 6450 | . . . . . . . 8 ⊢ (𝐹‘𝑥) ∈ V | |
9 | fnwe2.su | . . . . . . . 8 ⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) | |
10 | 8, 9 | csbie 3783 | . . . . . . 7 ⊢ ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = 𝑈 |
11 | 3 | csbeq1d 3764 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → ⦋(𝐹‘𝑥) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑎) / 𝑧⦌𝑆) |
12 | 10, 11 | syl5eqr 2875 | . . . . . 6 ⊢ (𝑥 = 𝑎 → 𝑈 = ⦋(𝐹‘𝑎) / 𝑧⦌𝑆) |
13 | 12 | adantr 474 | . . . . 5 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑈 = ⦋(𝐹‘𝑎) / 𝑧⦌𝑆) |
14 | simpr 479 | . . . . 5 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑦 = 𝑏) | |
15 | 7, 13, 14 | breq123d 4889 | . . . 4 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥𝑈𝑦 ↔ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏)) |
16 | 6, 15 | anbi12d 624 | . . 3 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦) ↔ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) |
17 | 5, 16 | orbi12d 947 | . 2 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦)) ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏)))) |
18 | fnwe2.t | . 2 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} | |
19 | 1, 2, 17, 18 | braba 5220 | 1 ⊢ (𝑎𝑇𝑏 ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 878 = wceq 1656 ⦋csb 3757 class class class wbr 4875 {copab 4937 ‘cfv 6127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-iota 6090 df-fv 6135 |
This theorem is referenced by: fnwe2lem2 38459 fnwe2lem3 38460 |
Copyright terms: Public domain | W3C validator |