Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelf Structured version   Visualization version   GIF version

Theorem sprsymrelf 47369
Description: The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelf 𝐹:𝑃𝑅
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑟   𝑅,𝑝   𝑉,𝑟,𝑐,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑝)

Proof of Theorem sprsymrelf
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.f . 2 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
2 sprsymrelfvlem 47364 . . . . 5 (𝑝 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
3 prcom 4757 . . . . . . . . . 10 {𝑥, 𝑦} = {𝑦, 𝑥}
43a1i 11 . . . . . . . . 9 (((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑐𝑝) → {𝑥, 𝑦} = {𝑦, 𝑥})
54eqeq2d 2751 . . . . . . . 8 (((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑐𝑝) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑦, 𝑥}))
65rexbidva 3183 . . . . . . 7 ((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥}))
7 df-br 5167 . . . . . . . 8 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
8 opabidw 5543 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦})
97, 8bitri 275 . . . . . . 7 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦 ↔ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦})
10 vex 3492 . . . . . . . 8 𝑦 ∈ V
11 vex 3492 . . . . . . . 8 𝑥 ∈ V
12 preq12 4760 . . . . . . . . . 10 ((𝑎 = 𝑦𝑏 = 𝑥) → {𝑎, 𝑏} = {𝑦, 𝑥})
1312eqeq2d 2751 . . . . . . . . 9 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑐 = {𝑎, 𝑏} ↔ 𝑐 = {𝑦, 𝑥}))
1413rexbidv 3185 . . . . . . . 8 ((𝑎 = 𝑦𝑏 = 𝑥) → (∃𝑐𝑝 𝑐 = {𝑎, 𝑏} ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥}))
15 preq12 4760 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → {𝑥, 𝑦} = {𝑎, 𝑏})
1615eqeq2d 2751 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑎, 𝑏}))
1716rexbidv 3185 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑝 𝑐 = {𝑎, 𝑏}))
1817cbvopabv 5239 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑎, 𝑏}}
1910, 11, 14, 18braba 5556 . . . . . . 7 (𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥 ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥})
206, 9, 193bitr4g 314 . . . . . 6 ((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) → (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
2120ralrimivva 3208 . . . . 5 (𝑝 ⊆ (Pairs‘𝑉) → ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
222, 21jca 511 . . . 4 (𝑝 ⊆ (Pairs‘𝑉) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
23 sprsymrelf.p . . . . . 6 𝑃 = 𝒫 (Pairs‘𝑉)
2423eleq2i 2836 . . . . 5 (𝑝𝑃𝑝 ∈ 𝒫 (Pairs‘𝑉))
25 vex 3492 . . . . . 6 𝑝 ∈ V
2625elpw 4626 . . . . 5 (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑝 ⊆ (Pairs‘𝑉))
2724, 26bitri 275 . . . 4 (𝑝𝑃𝑝 ⊆ (Pairs‘𝑉))
28 nfopab1 5236 . . . . . . 7 𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
2928nfeq2 2926 . . . . . 6 𝑥 𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
30 nfopab2 5237 . . . . . . . 8 𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
3130nfeq2 2926 . . . . . . 7 𝑦 𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
32 breq 5168 . . . . . . . 8 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (𝑥𝑟𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦))
33 breq 5168 . . . . . . . 8 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (𝑦𝑟𝑥𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
3432, 33bibi12d 345 . . . . . . 7 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3531, 34ralbid 3279 . . . . . 6 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (∀𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3629, 35ralbid 3279 . . . . 5 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3736elrab 3708 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)} ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3822, 27, 373imtr4i 292 . . 3 (𝑝𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)})
39 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
4038, 39eleqtrrdi 2855 . 2 (𝑝𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝑅)
411, 40fmpti 7146 1 𝐹:𝑃𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976  𝒫 cpw 4622  {cpr 4650  cop 4654   class class class wbr 5166  {copab 5228  cmpt 5249   × cxp 5698  wf 6569  cfv 6573  Pairscspr 47351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-spr 47352
This theorem is referenced by:  sprsymrelf1  47370  sprsymrelfo  47371
  Copyright terms: Public domain W3C validator