MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgval Structured version   Visualization version   GIF version

Theorem eqgval 19093
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgval.x 𝑋 = (Base‘𝐺)
eqgval.n 𝑁 = (invg𝐺)
eqgval.p + = (+g𝐺)
eqgval.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgval ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))

Proof of Theorem eqgval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.x . . . 4 𝑋 = (Base‘𝐺)
2 eqgval.n . . . 4 𝑁 = (invg𝐺)
3 eqgval.p . . . 4 + = (+g𝐺)
4 eqgval.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgfval 19092 . . 3 ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
65breqd 5106 . 2 ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵))
7 brabv 5511 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87adantl 481 . . 3 (((𝐺𝑉𝑆𝑋) ∧ 𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 simpr1 1195 . . . . 5 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐴𝑋)
109elexd 3461 . . . 4 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐴 ∈ V)
11 simpr2 1196 . . . . 5 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐵𝑋)
1211elexd 3461 . . . 4 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐵 ∈ V)
1310, 12jca 511 . . 3 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
14 vex 3441 . . . . . . . 8 𝑥 ∈ V
15 vex 3441 . . . . . . . 8 𝑦 ∈ V
1614, 15prss 4773 . . . . . . 7 ((𝑥𝑋𝑦𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋)
17 eleq1 2821 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑋𝐴𝑋))
18 eleq1 2821 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
1917, 18bi2anan9 638 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑋𝑦𝑋) ↔ (𝐴𝑋𝐵𝑋)))
2016, 19bitr3id 285 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ({𝑥, 𝑦} ⊆ 𝑋 ↔ (𝐴𝑋𝐵𝑋)))
21 fveq2 6830 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
22 id 22 . . . . . . . 8 (𝑦 = 𝐵𝑦 = 𝐵)
2321, 22oveqan12d 7373 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑁𝑥) + 𝑦) = ((𝑁𝐴) + 𝐵))
2423eleq1d 2818 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑁𝑥) + 𝑦) ∈ 𝑆 ↔ ((𝑁𝐴) + 𝐵) ∈ 𝑆))
2520, 24anbi12d 632 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
26 df-3an 1088 . . . . 5 ((𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆))
2725, 26bitr4di 289 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
28 eqid 2733 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}
2927, 28brabga 5479 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
308, 13, 29pm5.21nd 801 . 2 ((𝐺𝑉𝑆𝑋) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
316, 30bitrd 279 1 ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  {cpr 4579   class class class wbr 5095  {copab 5157  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  invgcminusg 18851   ~QG cqg 19039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-eqg 19042
This theorem is referenced by:  eqger  19094  eqglact  19095  eqgid  19096  eqgcpbl  19098  ghmqusnsglem1  19196  ghmquskerlem1  19199  gastacos  19226  orbstafun  19227  sylow2blem1  19536  sylow2blem3  19538  eqgabl  19750  tgpconncompeqg  24030  tgpconncomp  24031  qustgpopn  24038  qusker  33323  eqgvscpbl  33324  qusxpid  33337  nsgqusf1olem3  33389  qsnzr  33429  qsdrngilem  33468  qsdrnglem2  33470
  Copyright terms: Public domain W3C validator