MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgval Structured version   Visualization version   GIF version

Theorem eqgval 19090
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgval.x 𝑋 = (Base‘𝐺)
eqgval.n 𝑁 = (invg𝐺)
eqgval.p + = (+g𝐺)
eqgval.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgval ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))

Proof of Theorem eqgval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.x . . . 4 𝑋 = (Base‘𝐺)
2 eqgval.n . . . 4 𝑁 = (invg𝐺)
3 eqgval.p . . . 4 + = (+g𝐺)
4 eqgval.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgfval 19089 . . 3 ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
65breqd 5102 . 2 ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵))
7 brabv 5506 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87adantl 481 . . 3 (((𝐺𝑉𝑆𝑋) ∧ 𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 simpr1 1195 . . . . 5 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐴𝑋)
109elexd 3460 . . . 4 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐴 ∈ V)
11 simpr2 1196 . . . . 5 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐵𝑋)
1211elexd 3460 . . . 4 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐵 ∈ V)
1310, 12jca 511 . . 3 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
14 vex 3440 . . . . . . . 8 𝑥 ∈ V
15 vex 3440 . . . . . . . 8 𝑦 ∈ V
1614, 15prss 4772 . . . . . . 7 ((𝑥𝑋𝑦𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋)
17 eleq1 2819 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑋𝐴𝑋))
18 eleq1 2819 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
1917, 18bi2anan9 638 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑋𝑦𝑋) ↔ (𝐴𝑋𝐵𝑋)))
2016, 19bitr3id 285 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ({𝑥, 𝑦} ⊆ 𝑋 ↔ (𝐴𝑋𝐵𝑋)))
21 fveq2 6822 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
22 id 22 . . . . . . . 8 (𝑦 = 𝐵𝑦 = 𝐵)
2321, 22oveqan12d 7365 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑁𝑥) + 𝑦) = ((𝑁𝐴) + 𝐵))
2423eleq1d 2816 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑁𝑥) + 𝑦) ∈ 𝑆 ↔ ((𝑁𝐴) + 𝐵) ∈ 𝑆))
2520, 24anbi12d 632 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
26 df-3an 1088 . . . . 5 ((𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆))
2725, 26bitr4di 289 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
28 eqid 2731 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}
2927, 28brabga 5474 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
308, 13, 29pm5.21nd 801 . 2 ((𝐺𝑉𝑆𝑋) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
316, 30bitrd 279 1 ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  {cpr 4578   class class class wbr 5091  {copab 5153  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  invgcminusg 18847   ~QG cqg 19035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-eqg 19038
This theorem is referenced by:  eqger  19091  eqglact  19092  eqgid  19093  eqgcpbl  19095  ghmqusnsglem1  19193  ghmquskerlem1  19196  gastacos  19223  orbstafun  19224  sylow2blem1  19533  sylow2blem3  19535  eqgabl  19747  tgpconncompeqg  24028  tgpconncomp  24029  qustgpopn  24036  qusker  33312  eqgvscpbl  33313  qusxpid  33326  nsgqusf1olem3  33378  qsnzr  33418  qsdrngilem  33457  qsdrnglem2  33459
  Copyright terms: Public domain W3C validator