| Step | Hyp | Ref
| Expression |
| 1 | | eqgval.x |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
| 2 | | eqgval.n |
. . . 4
⊢ 𝑁 = (invg‘𝐺) |
| 3 | | eqgval.p |
. . . 4
⊢ + =
(+g‘𝐺) |
| 4 | | eqgval.r |
. . . 4
⊢ 𝑅 = (𝐺 ~QG 𝑆) |
| 5 | 1, 2, 3, 4 | eqgfval 19194 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑅 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |
| 6 | 5 | breqd 5154 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝐴𝑅𝐵 ↔ 𝐴{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}𝐵)) |
| 7 | | brabv 5573 |
. . . 4
⊢ (𝐴{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 8 | 7 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) ∧ 𝐴{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | | simpr1 1195 |
. . . . 5
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆)) → 𝐴 ∈ 𝑋) |
| 10 | 9 | elexd 3504 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆)) → 𝐴 ∈ V) |
| 11 | | simpr2 1196 |
. . . . 5
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆)) → 𝐵 ∈ 𝑋) |
| 12 | 11 | elexd 3504 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆)) → 𝐵 ∈ V) |
| 13 | 10, 12 | jca 511 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | | vex 3484 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 15 | | vex 3484 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 16 | 14, 15 | prss 4820 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋) |
| 17 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) |
| 18 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
| 19 | 17, 18 | bi2anan9 638 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
| 20 | 16, 19 | bitr3id 285 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ({𝑥, 𝑦} ⊆ 𝑋 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
| 21 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑁‘𝑥) = (𝑁‘𝐴)) |
| 22 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) |
| 23 | 21, 22 | oveqan12d 7450 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑁‘𝑥) + 𝑦) = ((𝑁‘𝐴) + 𝐵)) |
| 24 | 23 | eleq1d 2826 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (((𝑁‘𝑥) + 𝑦) ∈ 𝑆 ↔ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆)) |
| 25 | 20, 24 | anbi12d 632 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) |
| 26 | | df-3an 1089 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆)) |
| 27 | 25, 26 | bitr4di 289 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) |
| 28 | | eqid 2737 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} |
| 29 | 27, 28 | brabga 5539 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) |
| 30 | 8, 13, 29 | pm5.21nd 802 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝐴{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) |
| 31 | 6, 30 | bitrd 279 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) |