Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoss2 Structured version   Visualization version   GIF version

Theorem brcoss2 37813
Description: Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.)
Assertion
Ref Expression
brcoss2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem brcoss2
StepHypRef Expression
1 brcoss 37812 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
2 exan3 37674 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
31, 2bitr4d 282 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1773  wcel 2098   class class class wbr 5141  [cec 8700  ccoss 37554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ec 8704  df-coss 37792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator