Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brdifun | Structured version Visualization version GIF version |
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
swoer.1 | ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) |
Ref | Expression |
---|---|
brdifun | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5626 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
2 | df-br 5075 | . . . 4 ⊢ (𝐴(𝑋 × 𝑋)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
3 | 1, 2 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴(𝑋 × 𝑋)𝐵) |
4 | swoer.1 | . . . . . 6 ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) | |
5 | 4 | breqi 5080 | . . . . 5 ⊢ (𝐴𝑅𝐵 ↔ 𝐴((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))𝐵) |
6 | brdif 5127 | . . . . 5 ⊢ (𝐴((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < ∪ ◡ < )𝐵)) | |
7 | 5, 6 | bitri 274 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
8 | 7 | baib 536 | . . 3 ⊢ (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
9 | 3, 8 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
10 | brun 5125 | . . . 4 ⊢ (𝐴( < ∪ ◡ < )𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴◡ < 𝐵)) | |
11 | brcnvg 5788 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴)) | |
12 | 11 | orbi2d 913 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 < 𝐵 ∨ 𝐴◡ < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
13 | 10, 12 | bitrid 282 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( < ∪ ◡ < )𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
14 | 13 | notbid 318 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (¬ 𝐴( < ∪ ◡ < )𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
15 | 9, 14 | bitrd 278 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 〈cop 4567 class class class wbr 5074 × cxp 5587 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 |
This theorem is referenced by: swoer 8528 swoord1 8529 swoord2 8530 swoso 8531 |
Copyright terms: Public domain | W3C validator |