| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdifun | Structured version Visualization version GIF version | ||
| Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| swoer.1 | ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) |
| Ref | Expression |
|---|---|
| brdifun | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5722 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
| 2 | df-br 5144 | . . . 4 ⊢ (𝐴(𝑋 × 𝑋)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
| 3 | 1, 2 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴(𝑋 × 𝑋)𝐵) |
| 4 | swoer.1 | . . . . . 6 ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) | |
| 5 | 4 | breqi 5149 | . . . . 5 ⊢ (𝐴𝑅𝐵 ↔ 𝐴((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))𝐵) |
| 6 | brdif 5196 | . . . . 5 ⊢ (𝐴((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < ∪ ◡ < )𝐵)) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
| 8 | 7 | baib 535 | . . 3 ⊢ (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
| 9 | 3, 8 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
| 10 | brun 5194 | . . . 4 ⊢ (𝐴( < ∪ ◡ < )𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴◡ < 𝐵)) | |
| 11 | brcnvg 5890 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴)) | |
| 12 | 11 | orbi2d 916 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 < 𝐵 ∨ 𝐴◡ < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 13 | 10, 12 | bitrid 283 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( < ∪ ◡ < )𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 14 | 13 | notbid 318 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (¬ 𝐴( < ∪ ◡ < )𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 15 | 9, 14 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ∪ cun 3949 〈cop 4632 class class class wbr 5143 × cxp 5683 ◡ccnv 5684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 |
| This theorem is referenced by: swoer 8776 swoord1 8777 swoord2 8778 swoso 8779 |
| Copyright terms: Public domain | W3C validator |