MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdifun Structured version   Visualization version   GIF version

Theorem brdifun 8701
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
Assertion
Ref Expression
brdifun ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem brdifun
StepHypRef Expression
1 opelxpi 5675 . . . 4 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
2 df-br 5108 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
31, 2sylibr 234 . . 3 ((𝐴𝑋𝐵𝑋) → 𝐴(𝑋 × 𝑋)𝐵)
4 swoer.1 . . . . . 6 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
54breqi 5113 . . . . 5 (𝐴𝑅𝐵𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵)
6 brdif 5160 . . . . 5 (𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
75, 6bitri 275 . . . 4 (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
87baib 535 . . 3 (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
93, 8syl 17 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
10 brun 5158 . . . 4 (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐴 < 𝐵))
11 brcnvg 5843 . . . . 5 ((𝐴𝑋𝐵𝑋) → (𝐴 < 𝐵𝐵 < 𝐴))
1211orbi2d 915 . . . 4 ((𝐴𝑋𝐵𝑋) → ((𝐴 < 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1310, 12bitrid 283 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1413notbid 318 . 2 ((𝐴𝑋𝐵𝑋) → (¬ 𝐴( < < )𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
159, 14bitrd 279 1 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3911  cun 3912  cop 4595   class class class wbr 5107   × cxp 5636  ccnv 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646
This theorem is referenced by:  swoer  8702  swoord1  8703  swoord2  8704  swoso  8705
  Copyright terms: Public domain W3C validator