MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdifun Structured version   Visualization version   GIF version

Theorem brdifun 8485
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
Assertion
Ref Expression
brdifun ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem brdifun
StepHypRef Expression
1 opelxpi 5617 . . . 4 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
2 df-br 5071 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
31, 2sylibr 233 . . 3 ((𝐴𝑋𝐵𝑋) → 𝐴(𝑋 × 𝑋)𝐵)
4 swoer.1 . . . . . 6 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
54breqi 5076 . . . . 5 (𝐴𝑅𝐵𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵)
6 brdif 5123 . . . . 5 (𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
75, 6bitri 274 . . . 4 (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
87baib 535 . . 3 (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
93, 8syl 17 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
10 brun 5121 . . . 4 (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐴 < 𝐵))
11 brcnvg 5777 . . . . 5 ((𝐴𝑋𝐵𝑋) → (𝐴 < 𝐵𝐵 < 𝐴))
1211orbi2d 912 . . . 4 ((𝐴𝑋𝐵𝑋) → ((𝐴 < 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1310, 12syl5bb 282 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1413notbid 317 . 2 ((𝐴𝑋𝐵𝑋) → (¬ 𝐴( < < )𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
159, 14bitrd 278 1 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cop 4564   class class class wbr 5070   × cxp 5578  ccnv 5579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588
This theorem is referenced by:  swoer  8486  swoord1  8487  swoord2  8488  swoso  8489
  Copyright terms: Public domain W3C validator