Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brdifun | Structured version Visualization version GIF version |
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
swoer.1 | ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) |
Ref | Expression |
---|---|
brdifun | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5617 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
2 | df-br 5071 | . . . 4 ⊢ (𝐴(𝑋 × 𝑋)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
3 | 1, 2 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴(𝑋 × 𝑋)𝐵) |
4 | swoer.1 | . . . . . 6 ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) | |
5 | 4 | breqi 5076 | . . . . 5 ⊢ (𝐴𝑅𝐵 ↔ 𝐴((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))𝐵) |
6 | brdif 5123 | . . . . 5 ⊢ (𝐴((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < ∪ ◡ < )𝐵)) | |
7 | 5, 6 | bitri 274 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
8 | 7 | baib 535 | . . 3 ⊢ (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
9 | 3, 8 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
10 | brun 5121 | . . . 4 ⊢ (𝐴( < ∪ ◡ < )𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴◡ < 𝐵)) | |
11 | brcnvg 5777 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴)) | |
12 | 11 | orbi2d 912 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 < 𝐵 ∨ 𝐴◡ < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
13 | 10, 12 | syl5bb 282 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( < ∪ ◡ < )𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
14 | 13 | notbid 317 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (¬ 𝐴( < ∪ ◡ < )𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
15 | 9, 14 | bitrd 278 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 〈cop 4564 class class class wbr 5070 × cxp 5578 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 |
This theorem is referenced by: swoer 8486 swoord1 8487 swoord2 8488 swoso 8489 |
Copyright terms: Public domain | W3C validator |