MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdifun Structured version   Visualization version   GIF version

Theorem brdifun 8334
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
Assertion
Ref Expression
brdifun ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem brdifun
StepHypRef Expression
1 opelxpi 5565 . . . 4 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
2 df-br 5037 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
31, 2sylibr 237 . . 3 ((𝐴𝑋𝐵𝑋) → 𝐴(𝑋 × 𝑋)𝐵)
4 swoer.1 . . . . . 6 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
54breqi 5042 . . . . 5 (𝐴𝑅𝐵𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵)
6 brdif 5089 . . . . 5 (𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
75, 6bitri 278 . . . 4 (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
87baib 539 . . 3 (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
93, 8syl 17 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
10 brun 5087 . . . 4 (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐴 < 𝐵))
11 brcnvg 5725 . . . . 5 ((𝐴𝑋𝐵𝑋) → (𝐴 < 𝐵𝐵 < 𝐴))
1211orbi2d 913 . . . 4 ((𝐴𝑋𝐵𝑋) → ((𝐴 < 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1310, 12syl5bb 286 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1413notbid 321 . 2 ((𝐴𝑋𝐵𝑋) → (¬ 𝐴( < < )𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
159, 14bitrd 282 1 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  cdif 3857  cun 3858  cop 4531   class class class wbr 5036   × cxp 5526  ccnv 5527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-v 3411  df-dif 3863  df-un 3865  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-xp 5534  df-cnv 5536
This theorem is referenced by:  swoer  8335  swoord1  8336  swoord2  8337  swoso  8338
  Copyright terms: Public domain W3C validator