MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0domg Structured version   Visualization version   GIF version

Theorem 0domg 9045
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5315, ax-un 7691. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
0domg (𝐴𝑉 → ∅ ≼ 𝐴)

Proof of Theorem 0domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 5257 . . 3 ∅ ∈ V
2 f1eq1 6733 . . 3 (𝑓 = ∅ → (𝑓:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
3 f10 6815 . . 3 ∅:∅–1-1𝐴
41, 2, 3ceqsexv2d 3496 . 2 𝑓 𝑓:∅–1-1𝐴
5 brdom2g 8906 . . 3 ((∅ ∈ V ∧ 𝐴𝑉) → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1𝐴))
61, 5mpan 690 . 2 (𝐴𝑉 → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1𝐴))
74, 6mpbiri 258 1 (𝐴𝑉 → ∅ ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1779  wcel 2109  Vcvv 3444  c0 4292   class class class wbr 5102  1-1wf1 6496  cdom 8893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-dom 8897
This theorem is referenced by:  0sdomg  9047  0dom  9048  carddomi2  9899  wdomfil  9990  wdomnumr  9993  hashge0  14328  ufildom1  23846  harn0  43084  safesnsupfidom1o  43399  sn1dom  43508
  Copyright terms: Public domain W3C validator