Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0domg | Structured version Visualization version GIF version |
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5309, ax-un 7651. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
0domg | ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5252 | . . 3 ⊢ ∅ ∈ V | |
2 | f1eq1 6717 | . . 3 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
3 | f10 6801 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
4 | 1, 2, 3 | ceqsexv2d 3490 | . 2 ⊢ ∃𝑓 𝑓:∅–1-1→𝐴 |
5 | brdom2g 8817 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1→𝐴)) | |
6 | 1, 5 | mpan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1→𝐴)) |
7 | 4, 6 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 ∅c0 4270 class class class wbr 5093 –1-1→wf1 6477 ≼ cdom 8803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-dom 8807 |
This theorem is referenced by: dom0OLD 8969 0sdomg 8970 0sdomgOLD 8971 0dom 8972 sdom0OLD 8975 carddomi2 9828 wdomfil 9919 wdomnumr 9922 hashge0 14203 ufildom1 23184 harn0 41241 safesnsupfidom1o 41398 sn1dom 41507 |
Copyright terms: Public domain | W3C validator |