MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0domg Structured version   Visualization version   GIF version

Theorem 0domg 9068
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
0domg (𝐴𝑉 → ∅ ≼ 𝐴)

Proof of Theorem 0domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 5262 . . 3 ∅ ∈ V
2 f1eq1 6751 . . 3 (𝑓 = ∅ → (𝑓:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
3 f10 6833 . . 3 ∅:∅–1-1𝐴
41, 2, 3ceqsexv2d 3499 . 2 𝑓 𝑓:∅–1-1𝐴
5 brdom2g 8929 . . 3 ((∅ ∈ V ∧ 𝐴𝑉) → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1𝐴))
61, 5mpan 690 . 2 (𝐴𝑉 → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1𝐴))
74, 6mpbiri 258 1 (𝐴𝑉 → ∅ ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1779  wcel 2109  Vcvv 3447  c0 4296   class class class wbr 5107  1-1wf1 6508  cdom 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-dom 8920
This theorem is referenced by:  0sdomg  9070  0dom  9071  carddomi2  9923  wdomfil  10014  wdomnumr  10017  hashge0  14352  ufildom1  23813  harn0  43091  safesnsupfidom1o  43406  sn1dom  43515
  Copyright terms: Public domain W3C validator