| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0domg | Structured version Visualization version GIF version | ||
| Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5301, ax-un 7668. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| 0domg | ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 2 | f1eq1 6714 | . . 3 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 3 | f10 6796 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
| 4 | 1, 2, 3 | ceqsexv2d 3487 | . 2 ⊢ ∃𝑓 𝑓:∅–1-1→𝐴 |
| 5 | brdom2g 8880 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1→𝐴)) | |
| 6 | 1, 5 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1→𝐴)) |
| 7 | 4, 6 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 class class class wbr 5089 –1-1→wf1 6478 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-dom 8871 |
| This theorem is referenced by: 0sdomg 9019 0dom 9020 carddomi2 9863 wdomfil 9952 wdomnumr 9955 hashge0 14294 ufildom1 23841 harn0 43143 safesnsupfidom1o 43458 sn1dom 43567 |
| Copyright terms: Public domain | W3C validator |