MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0domg Structured version   Visualization version   GIF version

Theorem 0domg 8966
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5309, ax-un 7651. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
0domg (𝐴𝑉 → ∅ ≼ 𝐴)

Proof of Theorem 0domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 5252 . . 3 ∅ ∈ V
2 f1eq1 6717 . . 3 (𝑓 = ∅ → (𝑓:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
3 f10 6801 . . 3 ∅:∅–1-1𝐴
41, 2, 3ceqsexv2d 3490 . 2 𝑓 𝑓:∅–1-1𝐴
5 brdom2g 8817 . . 3 ((∅ ∈ V ∧ 𝐴𝑉) → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1𝐴))
61, 5mpan 687 . 2 (𝐴𝑉 → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1𝐴))
74, 6mpbiri 257 1 (𝐴𝑉 → ∅ ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1780  wcel 2105  Vcvv 3441  c0 4270   class class class wbr 5093  1-1wf1 6477  cdom 8803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-dom 8807
This theorem is referenced by:  dom0OLD  8969  0sdomg  8970  0sdomgOLD  8971  0dom  8972  sdom0OLD  8975  carddomi2  9828  wdomfil  9919  wdomnumr  9922  hashge0  14203  ufildom1  23184  harn0  41241  safesnsupfidom1o  41398  sn1dom  41507
  Copyright terms: Public domain W3C validator