| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0domg | Structured version Visualization version GIF version | ||
| Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| 0domg | ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 2 | f1eq1 6751 | . . 3 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 3 | f10 6833 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
| 4 | 1, 2, 3 | ceqsexv2d 3499 | . 2 ⊢ ∃𝑓 𝑓:∅–1-1→𝐴 |
| 5 | brdom2g 8929 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1→𝐴)) | |
| 6 | 1, 5 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1→𝐴)) |
| 7 | 4, 6 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 class class class wbr 5107 –1-1→wf1 6508 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-dom 8920 |
| This theorem is referenced by: 0sdomg 9070 0dom 9071 carddomi2 9923 wdomfil 10014 wdomnumr 10017 hashge0 14352 ufildom1 23813 harn0 43091 safesnsupfidom1o 43406 sn1dom 43515 |
| Copyright terms: Public domain | W3C validator |