![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0domg | Structured version Visualization version GIF version |
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5362, ax-un 7721. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
0domg | ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5306 | . . 3 ⊢ ∅ ∈ V | |
2 | f1eq1 6779 | . . 3 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
3 | f10 6863 | . . 3 ⊢ ∅:∅–1-1→𝐴 | |
4 | 1, 2, 3 | ceqsexv2d 3528 | . 2 ⊢ ∃𝑓 𝑓:∅–1-1→𝐴 |
5 | brdom2g 8947 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1→𝐴)) | |
6 | 1, 5 | mpan 688 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1→𝐴)) |
7 | 4, 6 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 class class class wbr 5147 –1-1→wf1 6537 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-dom 8937 |
This theorem is referenced by: dom0OLD 9099 0sdomg 9100 0sdomgOLD 9101 0dom 9102 sdom0OLD 9105 carddomi2 9961 wdomfil 10052 wdomnumr 10055 hashge0 14343 ufildom1 23421 harn0 41829 safesnsupfidom1o 42153 sn1dom 42262 |
Copyright terms: Public domain | W3C validator |