MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0domg Structured version   Visualization version   GIF version

Theorem 0domg 9021
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5304, ax-un 7671. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
0domg (𝐴𝑉 → ∅ ≼ 𝐴)

Proof of Theorem 0domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 5246 . . 3 ∅ ∈ V
2 f1eq1 6715 . . 3 (𝑓 = ∅ → (𝑓:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
3 f10 6797 . . 3 ∅:∅–1-1𝐴
41, 2, 3ceqsexv2d 3488 . 2 𝑓 𝑓:∅–1-1𝐴
5 brdom2g 8883 . . 3 ((∅ ∈ V ∧ 𝐴𝑉) → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1𝐴))
61, 5mpan 690 . 2 (𝐴𝑉 → (∅ ≼ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1𝐴))
74, 6mpbiri 258 1 (𝐴𝑉 → ∅ ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1779  wcel 2109  Vcvv 3436  c0 4284   class class class wbr 5092  1-1wf1 6479  cdom 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-dom 8874
This theorem is referenced by:  0sdomg  9023  0dom  9024  carddomi2  9866  wdomfil  9955  wdomnumr  9958  hashge0  14294  ufildom1  23811  harn0  43075  safesnsupfidom1o  43390  sn1dom  43499
  Copyright terms: Public domain W3C validator