MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom4g Structured version   Visualization version   GIF version

Theorem f1dom4g 8961
Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8968 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
f1dom4g (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom4g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1eq1 6783 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
21spcegv 3588 . . . 4 (𝐹𝑉 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
32imp 408 . . 3 ((𝐹𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
433ad2antl1 1186 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
5 brdom2g 8951 . . . 4 ((𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
653adant1 1131 . . 3 ((𝐹𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
76adantr 482 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
84, 7mpbird 257 1 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wex 1782  wcel 2107   class class class wbr 5149  1-1wf1 6541  cdom 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-dom 8941
This theorem is referenced by:  domssl  8994  domssr  8995
  Copyright terms: Public domain W3C validator