MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom4g Structured version   Visualization version   GIF version

Theorem f1dom4g 8888
Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 8894 does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
f1dom4g (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom4g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1eq1 6714 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
21spcegv 3547 . . . 4 (𝐹𝑉 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
32imp 406 . . 3 ((𝐹𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
433ad2antl1 1186 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
5 brdom2g 8880 . . . 4 ((𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
653adant1 1130 . . 3 ((𝐹𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
76adantr 480 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
84, 7mpbird 257 1 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1780  wcel 2111   class class class wbr 5089  1-1wf1 6478  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-dom 8871
This theorem is referenced by:  domssl  8920  domssr  8921
  Copyright terms: Public domain W3C validator