| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdomi | Structured version Visualization version GIF version | ||
| Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7691. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| brdomi | ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8901 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex12i 5686 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | brdom2g 8906 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 5 | 4 | ibi 267 | 1 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 –1-1→wf1 6496 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-fn 6502 df-f 6503 df-f1 6504 df-dom 8897 |
| This theorem is referenced by: domssl 8946 domssr 8947 2dom 8978 undom 9006 xpdom2 9013 domunsncan 9018 dom0 9046 fodomr 9069 domssex 9079 domtrfil 9133 sucdom2 9144 sdom1 9166 1sdom2dom 9170 infn0 9227 fodomfir 9255 hartogslem1 9471 infdifsn 9586 acndom 9980 acndom2 9983 fictb 10173 fin23lem41 10281 iundom2g 10469 pwfseq 10593 omssubadd 34284 |
| Copyright terms: Public domain | W3C validator |