![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdomi | Structured version Visualization version GIF version |
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brdomi | ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8308 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5456 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
3 | brdomg 8312 | . . 3 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
5 | 4 | ibi 259 | 1 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∃wex 1742 ∈ wcel 2048 Vcvv 3412 class class class wbr 4927 –1-1→wf1 6183 ≼ cdom 8300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pr 5184 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ral 3090 df-rex 3091 df-rab 3094 df-v 3414 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-nul 4178 df-if 4349 df-sn 4440 df-pr 4442 df-op 4446 df-uni 4711 df-br 4928 df-opab 4990 df-xp 5410 df-rel 5411 df-cnv 5412 df-dm 5414 df-rn 5415 df-fn 6189 df-f 6190 df-f1 6191 df-dom 8304 |
This theorem is referenced by: 2dom 8375 xpdom2 8404 domunsncan 8409 fodomr 8460 domssex 8470 sucdom2 8505 hartogslem1 8797 infdifsn 8910 acndom 9267 acndom2 9270 fictb 9461 fin23lem41 9568 iundom2g 9756 pwfseq 9880 omssubadd 31194 |
Copyright terms: Public domain | W3C validator |