| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdomi | Structured version Visualization version GIF version | ||
| Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7711. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| brdomi | ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8924 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex12i 5693 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | brdom2g 8929 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 5 | 4 | ibi 267 | 1 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 –1-1→wf1 6508 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-fn 6514 df-f 6515 df-f1 6516 df-dom 8920 |
| This theorem is referenced by: domssl 8969 domssr 8970 2dom 9001 undom 9029 xpdom2 9036 domunsncan 9041 dom0 9069 fodomr 9092 domssex 9102 domtrfil 9156 sucdom2 9167 sdom1 9189 1sdom2dom 9194 infn0 9251 fodomfir 9279 hartogslem1 9495 infdifsn 9610 acndom 10004 acndom2 10007 fictb 10197 fin23lem41 10305 iundom2g 10493 pwfseq 10617 omssubadd 34291 |
| Copyright terms: Public domain | W3C validator |