MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomi Structured version   Visualization version   GIF version

Theorem brdomi 8882
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7668. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
brdomi (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brdomi
StepHypRef Expression
1 reldom 8875 . . . 4 Rel ≼
21brrelex12i 5669 . . 3 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 brdom2g 8880 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
42, 3syl 17 . 2 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
54ibi 267 1 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2111  Vcvv 3436   class class class wbr 5089  1-1wf1 6478  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-fn 6484  df-f 6485  df-f1 6486  df-dom 8871
This theorem is referenced by:  domssl  8920  domssr  8921  2dom  8952  undom  8978  xpdom2  8985  domunsncan  8990  dom0  9018  fodomr  9041  domssex  9051  domtrfil  9101  sucdom2  9112  sdom1  9134  1sdom2dom  9138  infn0  9186  fodomfir  9212  hartogslem1  9428  infdifsn  9547  acndom  9942  acndom2  9945  fictb  10135  fin23lem41  10243  iundom2g  10431  pwfseq  10555  omssubadd  34313
  Copyright terms: Public domain W3C validator