| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdomi | Structured version Visualization version GIF version | ||
| Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7714. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| brdomi | ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8927 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex12i 5696 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | brdom2g 8932 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 5 | 4 | ibi 267 | 1 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 –1-1→wf1 6511 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-fn 6517 df-f 6518 df-f1 6519 df-dom 8923 |
| This theorem is referenced by: domssl 8972 domssr 8973 2dom 9004 undom 9033 xpdom2 9041 domunsncan 9046 sucdom2OLD 9056 dom0 9075 fodomr 9098 domssex 9108 domtrfil 9162 sucdom2 9173 sdom1 9196 1sdom2dom 9201 infn0 9258 fodomfir 9286 hartogslem1 9502 infdifsn 9617 acndom 10011 acndom2 10014 fictb 10204 fin23lem41 10312 iundom2g 10500 pwfseq 10624 omssubadd 34298 |
| Copyright terms: Public domain | W3C validator |