| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdomi | Structured version Visualization version GIF version | ||
| Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7668. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| brdomi | ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8875 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex12i 5669 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | brdom2g 8880 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 5 | 4 | ibi 267 | 1 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 –1-1→wf1 6478 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-fn 6484 df-f 6485 df-f1 6486 df-dom 8871 |
| This theorem is referenced by: domssl 8920 domssr 8921 2dom 8952 undom 8978 xpdom2 8985 domunsncan 8990 dom0 9018 fodomr 9041 domssex 9051 domtrfil 9101 sucdom2 9112 sdom1 9134 1sdom2dom 9138 infn0 9186 fodomfir 9212 hartogslem1 9428 infdifsn 9547 acndom 9942 acndom2 9945 fictb 10135 fin23lem41 10243 iundom2g 10431 pwfseq 10555 omssubadd 34313 |
| Copyright terms: Public domain | W3C validator |