![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdomi | Structured version Visualization version GIF version |
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7754. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
brdomi | ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8990 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex12i 5744 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | brdom2g 8995 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
5 | 4 | ibi 267 | 1 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 –1-1→wf1 6560 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-fn 6566 df-f 6567 df-f1 6568 df-dom 8986 |
This theorem is referenced by: domssl 9037 domssr 9038 2dom 9069 undom 9098 xpdom2 9106 domunsncan 9111 sucdom2OLD 9121 dom0 9141 fodomr 9167 domssex 9177 domtrfil 9230 sucdom2 9241 sdom1 9276 1sdom2dom 9281 infn0 9338 fodomfir 9366 hartogslem1 9580 infdifsn 9695 acndom 10089 acndom2 10092 fictb 10282 fin23lem41 10390 iundom2g 10578 pwfseq 10702 omssubadd 34282 |
Copyright terms: Public domain | W3C validator |