MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomi Structured version   Visualization version   GIF version

Theorem brdomi 8931
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) Avoid ax-un 7711. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
brdomi (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brdomi
StepHypRef Expression
1 reldom 8924 . . . 4 Rel ≼
21brrelex12i 5693 . . 3 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 brdom2g 8929 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
42, 3syl 17 . 2 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
54ibi 267 1 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3447   class class class wbr 5107  1-1wf1 6508  cdom 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-fn 6514  df-f 6515  df-f1 6516  df-dom 8920
This theorem is referenced by:  domssl  8969  domssr  8970  2dom  9001  undom  9029  xpdom2  9036  domunsncan  9041  dom0  9069  fodomr  9092  domssex  9102  domtrfil  9156  sucdom2  9167  sdom1  9189  1sdom2dom  9194  infn0  9251  fodomfir  9279  hartogslem1  9495  infdifsn  9610  acndom  10004  acndom2  10007  fictb  10197  fin23lem41  10305  iundom2g  10493  pwfseq  10617  omssubadd  34291
  Copyright terms: Public domain W3C validator