| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsquad | Structured version Visualization version GIF version | ||
| Description: The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| lgsquad | ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | simp2 1137 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (ℙ ∖ {2})) | |
| 3 | simp3 1138 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
| 4 | eqid 2731 | . 2 ⊢ ((𝑃 − 1) / 2) = ((𝑃 − 1) / 2) | |
| 5 | eqid 2731 | . 2 ⊢ ((𝑄 − 1) / 2) = ((𝑄 − 1) / 2) | |
| 6 | eleq1w 2814 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↔ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) | |
| 7 | eleq1w 2814 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ (1...((𝑄 − 1) / 2)) ↔ 𝑤 ∈ (1...((𝑄 − 1) / 2)))) | |
| 8 | 6, 7 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ↔ (𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))))) |
| 9 | oveq1 7353 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 · 𝑃) = (𝑤 · 𝑃)) | |
| 10 | oveq1 7353 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 · 𝑄) = (𝑧 · 𝑄)) | |
| 11 | 9, 10 | breqan12rd 5106 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑤 · 𝑃) < (𝑧 · 𝑄))) |
| 12 | 8, 11 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑤 · 𝑃) < (𝑧 · 𝑄)))) |
| 13 | 12 | cbvopabv 5162 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑤 · 𝑃) < (𝑧 · 𝑄))} |
| 14 | 1, 2, 3, 4, 5, 13 | lgsquadlem3 27320 | 1 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4573 class class class wbr 5089 {copab 5151 (class class class)co 7346 1c1 11007 · cmul 11011 < clt 11146 − cmin 11344 -cneg 11345 / cdiv 11774 2c2 12180 ...cfz 13407 ↑cexp 13968 ℙcprime 16582 /L clgs 27232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-dvds 16164 df-gcd 16406 df-prm 16583 df-phi 16677 df-pc 16749 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-domn 20610 df-idom 20611 df-drng 20646 df-field 20647 df-lmod 20795 df-lss 20865 df-lsp 20905 df-sra 21107 df-rgmod 21108 df-lidl 21145 df-rsp 21146 df-2idl 21187 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-zn 21443 df-lgs 27233 |
| This theorem is referenced by: lgsquad2 27324 |
| Copyright terms: Public domain | W3C validator |