Proof of Theorem ramub1lem1
Step | Hyp | Ref
| Expression |
1 | | ramub1.4 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Fin) |
2 | | ramub1.v |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ⊆ 𝑊) |
3 | | ramub1.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ⊆ (𝑆 ∖ {𝑋})) |
4 | 2, 3 | sstrd 3927 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ⊆ (𝑆 ∖ {𝑋})) |
5 | 4 | difss2d 4065 |
. . . . . 6
⊢ (𝜑 → 𝑉 ⊆ 𝑆) |
6 | | ramub1.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
7 | 6 | snssd 4739 |
. . . . . 6
⊢ (𝜑 → {𝑋} ⊆ 𝑆) |
8 | 5, 7 | unssd 4116 |
. . . . 5
⊢ (𝜑 → (𝑉 ∪ {𝑋}) ⊆ 𝑆) |
9 | 1, 8 | sselpwd 5245 |
. . . 4
⊢ (𝜑 → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆) |
10 | 9 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆) |
11 | | iftrue 4462 |
. . . . . . 7
⊢ (𝐸 = 𝐷 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) = ((𝐹‘𝐷) − 1)) |
12 | 11 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) = ((𝐹‘𝐷) − 1)) |
13 | | ramub1.9 |
. . . . . . 7
⊢ (𝜑 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) |
14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) |
15 | 12, 14 | eqbrtrrd 5094 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ((𝐹‘𝐷) − 1) ≤ (♯‘𝑉)) |
16 | | ramub1.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑅⟶ℕ) |
17 | | ramub1.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑅) |
18 | 16, 17 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐷) ∈ ℕ) |
19 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝐹‘𝐷) ∈ ℕ) |
20 | 19 | nnred 11918 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝐹‘𝐷) ∈ ℝ) |
21 | | 1red 10907 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → 1 ∈ ℝ) |
22 | 1, 5 | ssfid 8971 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ Fin) |
23 | | hashcl 13999 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin →
(♯‘𝑉) ∈
ℕ0) |
24 | | nn0re 12172 |
. . . . . . . 8
⊢
((♯‘𝑉)
∈ ℕ0 → (♯‘𝑉) ∈ ℝ) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑉) ∈
ℝ) |
26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (♯‘𝑉) ∈ ℝ) |
27 | 20, 21, 26 | lesubaddd 11502 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (((𝐹‘𝐷) − 1) ≤ (♯‘𝑉) ↔ (𝐹‘𝐷) ≤ ((♯‘𝑉) + 1))) |
28 | 15, 27 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝐹‘𝐷) ≤ ((♯‘𝑉) + 1)) |
29 | | fveq2 6756 |
. . . . 5
⊢ (𝐸 = 𝐷 → (𝐹‘𝐸) = (𝐹‘𝐷)) |
30 | | snidg 4592 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ {𝑋}) |
31 | 6, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
32 | 4 | sseld 3916 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∈ 𝑉 → 𝑋 ∈ (𝑆 ∖ {𝑋}))) |
33 | | eldifn 4058 |
. . . . . . . 8
⊢ (𝑋 ∈ (𝑆 ∖ {𝑋}) → ¬ 𝑋 ∈ {𝑋}) |
34 | 32, 33 | syl6 35 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ {𝑋})) |
35 | 31, 34 | mt2d 136 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑉) |
36 | | hashunsng 14035 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑆 → ((𝑉 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1))) |
37 | 6, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑉 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1))) |
38 | 22, 35, 37 | mp2and 695 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1)) |
39 | 29, 38 | breqan12rd 5087 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ((𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ↔ (𝐹‘𝐷) ≤ ((♯‘𝑉) + 1))) |
40 | 28, 39 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋}))) |
41 | | snfi 8788 |
. . . . . . 7
⊢ {𝑋} ∈ Fin |
42 | | unfi 8917 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ {𝑋} ∈ Fin) → (𝑉 ∪ {𝑋}) ∈ Fin) |
43 | 22, 41, 42 | sylancl 585 |
. . . . . 6
⊢ (𝜑 → (𝑉 ∪ {𝑋}) ∈ Fin) |
44 | | ramub1.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
45 | 44 | nnnn0d 12223 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
46 | | ramub1.3 |
. . . . . . 7
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
47 | 46 | hashbcval 16631 |
. . . . . 6
⊢ (((𝑉 ∪ {𝑋}) ∈ Fin ∧ 𝑀 ∈ ℕ0) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀}) |
48 | 43, 45, 47 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀}) |
49 | 48 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀}) |
50 | | simpl1l 1222 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝜑) |
51 | 46 | hashbcval 16631 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑀 ∈ ℕ0)
→ (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀}) |
52 | 22, 45, 51 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀}) |
53 | | ramub1.s |
. . . . . . . . 9
⊢ (𝜑 → (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) |
54 | 52, 53 | eqsstrrd 3956 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (◡𝐾 “ {𝐸})) |
55 | 50, 54 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (◡𝐾 “ {𝐸})) |
56 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑉) |
57 | | simpl3 1191 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀) |
58 | | rabid 3304 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑉 ∧ (♯‘𝑥) = 𝑀)) |
59 | 56, 57, 58 | sylanbrc 582 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀}) |
60 | 55, 59 | sseldd 3918 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (◡𝐾 “ {𝐸})) |
61 | | simpl2 1190 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋})) |
62 | 61 | elpwid 4541 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ (𝑉 ∪ {𝑋})) |
63 | | simpl1l 1222 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝜑) |
64 | 63, 8 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑉 ∪ {𝑋}) ⊆ 𝑆) |
65 | 62, 64 | sstrd 3927 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ 𝑆) |
66 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
67 | 66 | elpw 4534 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆) |
68 | 65, 67 | sylibr 233 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑆) |
69 | | simpl3 1191 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀) |
70 | | rabid 3304 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑆 ∧ (♯‘𝑥) = 𝑀)) |
71 | 68, 69, 70 | sylanbrc 582 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
72 | 46 | hashbcval 16631 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0)
→ (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
73 | 1, 45, 72 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
74 | 63, 73 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
75 | 71, 74 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝑆𝐶𝑀)) |
76 | 3 | difss2d 4065 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑊 ⊆ 𝑆) |
77 | 1, 76 | ssfid 8971 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑊 ∈ Fin) |
78 | | nnm1nn0 12204 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈
ℕ0) |
79 | 44, 78 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 − 1) ∈
ℕ0) |
80 | 46 | hashbcval 16631 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Fin ∧ (𝑀 − 1) ∈
ℕ0) → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)}) |
81 | 77, 79, 80 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)}) |
82 | | ramub1.8 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝐷})) |
83 | 81, 82 | eqsstrrd 3956 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (◡𝐻 “ {𝐷})) |
84 | 63, 83 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (◡𝐻 “ {𝐷})) |
85 | | fveqeq2 6765 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑥 ∖ {𝑋}) → ((♯‘𝑢) = (𝑀 − 1) ↔ (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1))) |
86 | | uncom 4083 |
. . . . . . . . . . . . . . . 16
⊢ (𝑉 ∪ {𝑋}) = ({𝑋} ∪ 𝑉) |
87 | 62, 86 | sseqtrdi 3967 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ ({𝑋} ∪ 𝑉)) |
88 | | ssundif 4415 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ ({𝑋} ∪ 𝑉) ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑉) |
89 | 87, 88 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑉) |
90 | 63, 2 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑉 ⊆ 𝑊) |
91 | 89, 90 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑊) |
92 | 66 | difexi 5247 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∖ {𝑋}) ∈ V |
93 | 92 | elpw 4534 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑊) |
94 | 91, 93 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊) |
95 | 63, 1 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑆 ∈ Fin) |
96 | 95, 65 | ssfid 8971 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ Fin) |
97 | | diffi 8979 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Fin → (𝑥 ∖ {𝑋}) ∈ Fin) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ Fin) |
99 | | hashcl 13999 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∖ {𝑋}) ∈ Fin → (♯‘(𝑥 ∖ {𝑋})) ∈
ℕ0) |
100 | | nn0cn 12173 |
. . . . . . . . . . . . . . 15
⊢
((♯‘(𝑥
∖ {𝑋})) ∈
ℕ0 → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ) |
101 | 98, 99, 100 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ) |
102 | | ax-1cn 10860 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
103 | | pncan 11157 |
. . . . . . . . . . . . . 14
⊢
(((♯‘(𝑥
∖ {𝑋})) ∈
ℂ ∧ 1 ∈ ℂ) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋}))) |
104 | 101, 102,
103 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋}))) |
105 | | neldifsnd 4723 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) |
106 | | hashunsng 14035 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ 𝑆 → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1))) |
107 | 63, 6, 106 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1))) |
108 | 98, 105, 107 | mp2and 695 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1)) |
109 | | undif1 4406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∖ {𝑋}) ∪ {𝑋}) = (𝑥 ∪ {𝑋}) |
110 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑥 ∈ 𝒫 𝑉) |
111 | 61, 110 | eldifd 3894 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉)) |
112 | | elpwunsn 4616 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉) → 𝑋 ∈ 𝑥) |
113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑋 ∈ 𝑥) |
114 | 113 | snssd 4739 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑋} ⊆ 𝑥) |
115 | | ssequn2 4113 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑋} ⊆ 𝑥 ↔ (𝑥 ∪ {𝑋}) = 𝑥) |
116 | 114, 115 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∪ {𝑋}) = 𝑥) |
117 | 109, 116 | eqtr2id 2792 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 = ((𝑥 ∖ {𝑋}) ∪ {𝑋})) |
118 | 117 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋}))) |
119 | 118, 69 | eqtr3d 2780 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝑀) |
120 | 108, 119 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ((♯‘(𝑥 ∖ {𝑋})) + 1) = 𝑀) |
121 | 120 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (𝑀 − 1)) |
122 | 104, 121 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)) |
123 | 85, 94, 122 | elrabd 3619 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)}) |
124 | 84, 123 | sseldd 3918 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ (◡𝐻 “ {𝐷})) |
125 | | ramub1.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) |
126 | 125 | mptiniseg 6131 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝑅 → (◡𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷}) |
127 | 63, 17, 126 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (◡𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷}) |
128 | 124, 127 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷}) |
129 | | uneq1 4086 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑥 ∖ {𝑋}) → (𝑢 ∪ {𝑋}) = ((𝑥 ∖ {𝑋}) ∪ {𝑋})) |
130 | 129 | fveqeq2d 6764 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑥 ∖ {𝑋}) → ((𝐾‘(𝑢 ∪ {𝑋})) = 𝐷 ↔ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)) |
131 | 130 | elrab 3617 |
. . . . . . . . . 10
⊢ ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} ↔ ((𝑥 ∖ {𝑋}) ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∧ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)) |
132 | 131 | simprbi 496 |
. . . . . . . . 9
⊢ ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷) |
133 | 128, 132 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷) |
134 | 117 | fveq2d 6760 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘𝑥) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋}))) |
135 | | simpl1r 1223 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝐸 = 𝐷) |
136 | 133, 134,
135 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘𝑥) = 𝐸) |
137 | | ramub1.6 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) |
138 | 137 | ffnd 6585 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 Fn (𝑆𝐶𝑀)) |
139 | | fniniseg 6919 |
. . . . . . . 8
⊢ (𝐾 Fn (𝑆𝐶𝑀) → (𝑥 ∈ (◡𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾‘𝑥) = 𝐸))) |
140 | 63, 138, 139 | 3syl 18 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∈ (◡𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾‘𝑥) = 𝐸))) |
141 | 75, 136, 140 | mpbir2and 709 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (◡𝐾 “ {𝐸})) |
142 | 60, 141 | pm2.61dan 809 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) → 𝑥 ∈ (◡𝐾 “ {𝐸})) |
143 | 142 | rabssdv 4004 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀} ⊆ (◡𝐾 “ {𝐸})) |
144 | 49, 143 | eqsstrd 3955 |
. . 3
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) |
145 | | fveq2 6756 |
. . . . . 6
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → (♯‘𝑧) = (♯‘(𝑉 ∪ {𝑋}))) |
146 | 145 | breq2d 5082 |
. . . . 5
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → ((𝐹‘𝐸) ≤ (♯‘𝑧) ↔ (𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})))) |
147 | | oveq1 7262 |
. . . . . 6
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → (𝑧𝐶𝑀) = ((𝑉 ∪ {𝑋})𝐶𝑀)) |
148 | 147 | sseq1d 3948 |
. . . . 5
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → ((𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}) ↔ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
149 | 146, 148 | anbi12d 630 |
. . . 4
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → (((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) ↔ ((𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})))) |
150 | 149 | rspcev 3552 |
. . 3
⊢ (((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ ((𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
151 | 10, 40, 144, 150 | syl12anc 833 |
. 2
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
152 | 1, 5 | sselpwd 5245 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ 𝒫 𝑆) |
153 | 152 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → 𝑉 ∈ 𝒫 𝑆) |
154 | | ifnefalse 4468 |
. . . . 5
⊢ (𝐸 ≠ 𝐷 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) = (𝐹‘𝐸)) |
155 | 154 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) = (𝐹‘𝐸)) |
156 | 13 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) |
157 | 155, 156 | eqbrtrrd 5094 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → (𝐹‘𝐸) ≤ (♯‘𝑉)) |
158 | 53 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) |
159 | | fveq2 6756 |
. . . . . 6
⊢ (𝑧 = 𝑉 → (♯‘𝑧) = (♯‘𝑉)) |
160 | 159 | breq2d 5082 |
. . . . 5
⊢ (𝑧 = 𝑉 → ((𝐹‘𝐸) ≤ (♯‘𝑧) ↔ (𝐹‘𝐸) ≤ (♯‘𝑉))) |
161 | | oveq1 7262 |
. . . . . 6
⊢ (𝑧 = 𝑉 → (𝑧𝐶𝑀) = (𝑉𝐶𝑀)) |
162 | 161 | sseq1d 3948 |
. . . . 5
⊢ (𝑧 = 𝑉 → ((𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}) ↔ (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
163 | 160, 162 | anbi12d 630 |
. . . 4
⊢ (𝑧 = 𝑉 → (((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) ↔ ((𝐹‘𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})))) |
164 | 163 | rspcev 3552 |
. . 3
⊢ ((𝑉 ∈ 𝒫 𝑆 ∧ ((𝐹‘𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
165 | 153, 157,
158, 164 | syl12anc 833 |
. 2
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
166 | 151, 165 | pm2.61dane 3031 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |