MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem1 Structured version   Visualization version   GIF version

Theorem ramub1lem1 16955
Description: Lemma for ramub1 16957. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
ramub1.d (𝜑𝐷𝑅)
ramub1.w (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
ramub1.7 (𝜑 → (𝐺𝐷) ≤ (♯‘𝑊))
ramub1.8 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
ramub1.e (𝜑𝐸𝑅)
ramub1.v (𝜑𝑉𝑊)
ramub1.9 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
ramub1.s (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
Assertion
Ref Expression
ramub1lem1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Distinct variable groups:   𝑥,𝑢,𝐷   𝑦,𝑢,𝑧,𝐹,𝑥   𝑎,𝑏,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑢,𝑅,𝑥,𝑦,𝑧   𝑊,𝑎,𝑖,𝑢   𝜑,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑉,𝑎,𝑖,𝑥,𝑧   𝑢,𝐶,𝑥,𝑦,𝑧   𝑢,𝐻,𝑥,𝑦,𝑧   𝑢,𝐾,𝑥,𝑦,𝑧   𝑥,𝐸,𝑧   𝑋,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐸(𝑦,𝑢,𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑉(𝑦,𝑢,𝑏)   𝑊(𝑥,𝑦,𝑧,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem1
StepHypRef Expression
1 ramub1.4 . . . . 5 (𝜑𝑆 ∈ Fin)
2 ramub1.v . . . . . . . 8 (𝜑𝑉𝑊)
3 ramub1.w . . . . . . . 8 (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
42, 3sstrd 3991 . . . . . . 7 (𝜑𝑉 ⊆ (𝑆 ∖ {𝑋}))
54difss2d 4133 . . . . . 6 (𝜑𝑉𝑆)
6 ramub1.x . . . . . . 7 (𝜑𝑋𝑆)
76snssd 4811 . . . . . 6 (𝜑 → {𝑋} ⊆ 𝑆)
85, 7unssd 4185 . . . . 5 (𝜑 → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
91, 8sselpwd 5325 . . . 4 (𝜑 → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
109adantr 482 . . 3 ((𝜑𝐸 = 𝐷) → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
11 iftrue 4533 . . . . . . 7 (𝐸 = 𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
1211adantl 483 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
13 ramub1.9 . . . . . . 7 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
1413adantr 482 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
1512, 14eqbrtrrd 5171 . . . . 5 ((𝜑𝐸 = 𝐷) → ((𝐹𝐷) − 1) ≤ (♯‘𝑉))
16 ramub1.f . . . . . . . . 9 (𝜑𝐹:𝑅⟶ℕ)
17 ramub1.d . . . . . . . . 9 (𝜑𝐷𝑅)
1816, 17ffvelcdmd 7083 . . . . . . . 8 (𝜑 → (𝐹𝐷) ∈ ℕ)
1918adantr 482 . . . . . . 7 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℕ)
2019nnred 12223 . . . . . 6 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℝ)
21 1red 11211 . . . . . 6 ((𝜑𝐸 = 𝐷) → 1 ∈ ℝ)
221, 5ssfid 9263 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
23 hashcl 14312 . . . . . . . 8 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
24 nn0re 12477 . . . . . . . 8 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
2522, 23, 243syl 18 . . . . . . 7 (𝜑 → (♯‘𝑉) ∈ ℝ)
2625adantr 482 . . . . . 6 ((𝜑𝐸 = 𝐷) → (♯‘𝑉) ∈ ℝ)
2720, 21, 26lesubaddd 11807 . . . . 5 ((𝜑𝐸 = 𝐷) → (((𝐹𝐷) − 1) ≤ (♯‘𝑉) ↔ (𝐹𝐷) ≤ ((♯‘𝑉) + 1)))
2815, 27mpbid 231 . . . 4 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ≤ ((♯‘𝑉) + 1))
29 fveq2 6888 . . . . 5 (𝐸 = 𝐷 → (𝐹𝐸) = (𝐹𝐷))
30 snidg 4661 . . . . . . . 8 (𝑋𝑆𝑋 ∈ {𝑋})
316, 30syl 17 . . . . . . 7 (𝜑𝑋 ∈ {𝑋})
324sseld 3980 . . . . . . . 8 (𝜑 → (𝑋𝑉𝑋 ∈ (𝑆 ∖ {𝑋})))
33 eldifn 4126 . . . . . . . 8 (𝑋 ∈ (𝑆 ∖ {𝑋}) → ¬ 𝑋 ∈ {𝑋})
3432, 33syl6 35 . . . . . . 7 (𝜑 → (𝑋𝑉 → ¬ 𝑋 ∈ {𝑋}))
3531, 34mt2d 136 . . . . . 6 (𝜑 → ¬ 𝑋𝑉)
36 hashunsng 14348 . . . . . . 7 (𝑋𝑆 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1)))
376, 36syl 17 . . . . . 6 (𝜑 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1)))
3822, 35, 37mp2and 698 . . . . 5 (𝜑 → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1))
3929, 38breqan12rd 5164 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ↔ (𝐹𝐷) ≤ ((♯‘𝑉) + 1)))
4028, 39mpbird 257 . . 3 ((𝜑𝐸 = 𝐷) → (𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})))
41 snfi 9040 . . . . . . 7 {𝑋} ∈ Fin
42 unfi 9168 . . . . . . 7 ((𝑉 ∈ Fin ∧ {𝑋} ∈ Fin) → (𝑉 ∪ {𝑋}) ∈ Fin)
4322, 41, 42sylancl 587 . . . . . 6 (𝜑 → (𝑉 ∪ {𝑋}) ∈ Fin)
44 ramub1.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
4544nnnn0d 12528 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
46 ramub1.3 . . . . . . 7 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
4746hashbcval 16931 . . . . . 6 (((𝑉 ∪ {𝑋}) ∈ Fin ∧ 𝑀 ∈ ℕ0) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
4843, 45, 47syl2anc 585 . . . . 5 (𝜑 → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
4948adantr 482 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
50 simpl1l 1225 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
5146hashbcval 16931 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
5222, 45, 51syl2anc 585 . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
53 ramub1.s . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
5452, 53eqsstrrd 4020 . . . . . . . 8 (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
5550, 54syl 17 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
56 simpr 486 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑉)
57 simpl3 1194 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀)
58 rabid 3453 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑉 ∧ (♯‘𝑥) = 𝑀))
5956, 57, 58sylanbrc 584 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
6055, 59sseldd 3982 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
61 simpl2 1193 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}))
6261elpwid 4610 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ (𝑉 ∪ {𝑋}))
63 simpl1l 1225 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
6463, 8syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
6562, 64sstrd 3991 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥𝑆)
66 vex 3479 . . . . . . . . . . 11 𝑥 ∈ V
6766elpw 4605 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
6865, 67sylibr 233 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑆)
69 simpl3 1194 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀)
70 rabid 3453 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑆 ∧ (♯‘𝑥) = 𝑀))
7168, 69, 70sylanbrc 584 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7246hashbcval 16931 . . . . . . . . . 10 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
731, 45, 72syl2anc 585 . . . . . . . . 9 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7463, 73syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7571, 74eleqtrrd 2837 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝑆𝐶𝑀))
763difss2d 4133 . . . . . . . . . . . . . . 15 (𝜑𝑊𝑆)
771, 76ssfid 9263 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ Fin)
78 nnm1nn0 12509 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
7944, 78syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ∈ ℕ0)
8046hashbcval 16931 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
8177, 79, 80syl2anc 585 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
82 ramub1.8 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
8381, 82eqsstrrd 4020 . . . . . . . . . . . 12 (𝜑 → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
8463, 83syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
85 fveqeq2 6897 . . . . . . . . . . . 12 (𝑢 = (𝑥 ∖ {𝑋}) → ((♯‘𝑢) = (𝑀 − 1) ↔ (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)))
86 uncom 4152 . . . . . . . . . . . . . . . 16 (𝑉 ∪ {𝑋}) = ({𝑋} ∪ 𝑉)
8762, 86sseqtrdi 4031 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ ({𝑋} ∪ 𝑉))
88 ssundif 4486 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ({𝑋} ∪ 𝑉) ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑉)
8987, 88sylib 217 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑉)
9063, 2syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑉𝑊)
9189, 90sstrd 3991 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑊)
9266difexi 5327 . . . . . . . . . . . . . 14 (𝑥 ∖ {𝑋}) ∈ V
9392elpw 4605 . . . . . . . . . . . . 13 ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑊)
9491, 93sylibr 233 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊)
9563, 1syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑆 ∈ Fin)
9695, 65ssfid 9263 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ Fin)
97 diffi 9175 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin → (𝑥 ∖ {𝑋}) ∈ Fin)
9896, 97syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ Fin)
99 hashcl 14312 . . . . . . . . . . . . . . 15 ((𝑥 ∖ {𝑋}) ∈ Fin → (♯‘(𝑥 ∖ {𝑋})) ∈ ℕ0)
100 nn0cn 12478 . . . . . . . . . . . . . . 15 ((♯‘(𝑥 ∖ {𝑋})) ∈ ℕ0 → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ)
10198, 99, 1003syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ)
102 ax-1cn 11164 . . . . . . . . . . . . . 14 1 ∈ ℂ
103 pncan 11462 . . . . . . . . . . . . . 14 (((♯‘(𝑥 ∖ {𝑋})) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋})))
104101, 102, 103sylancl 587 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋})))
105 neldifsnd 4795 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑋 ∈ (𝑥 ∖ {𝑋}))
106 hashunsng 14348 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1)))
10763, 6, 1063syl 18 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1)))
10898, 105, 107mp2and 698 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1))
109 undif1 4474 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∖ {𝑋}) ∪ {𝑋}) = (𝑥 ∪ {𝑋})
110 simpr 486 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑥 ∈ 𝒫 𝑉)
11161, 110eldifd 3958 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉))
112 elpwunsn 4686 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉) → 𝑋𝑥)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑋𝑥)
114113snssd 4811 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑋} ⊆ 𝑥)
115 ssequn2 4182 . . . . . . . . . . . . . . . . . . 19 ({𝑋} ⊆ 𝑥 ↔ (𝑥 ∪ {𝑋}) = 𝑥)
116114, 115sylib 217 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∪ {𝑋}) = 𝑥)
117109, 116eqtr2id 2786 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
118117fveq2d 6892 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
119118, 69eqtr3d 2775 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝑀)
120108, 119eqtr3d 2775 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ((♯‘(𝑥 ∖ {𝑋})) + 1) = 𝑀)
121120oveq1d 7419 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (𝑀 − 1))
122104, 121eqtr3d 2775 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1))
12385, 94, 122elrabd 3684 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
12484, 123sseldd 3982 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ (𝐻 “ {𝐷}))
125 ramub1.h . . . . . . . . . . . 12 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
126125mptiniseg 6235 . . . . . . . . . . 11 (𝐷𝑅 → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
12763, 17, 1263syl 18 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
128124, 127eleqtrd 2836 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
129 uneq1 4155 . . . . . . . . . . . 12 (𝑢 = (𝑥 ∖ {𝑋}) → (𝑢 ∪ {𝑋}) = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
130129fveqeq2d 6896 . . . . . . . . . . 11 (𝑢 = (𝑥 ∖ {𝑋}) → ((𝐾‘(𝑢 ∪ {𝑋})) = 𝐷 ↔ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
131130elrab 3682 . . . . . . . . . 10 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} ↔ ((𝑥 ∖ {𝑋}) ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∧ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
132131simprbi 498 . . . . . . . . 9 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
133128, 132syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
134117fveq2d 6892 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
135 simpl1r 1226 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝐸 = 𝐷)
136133, 134, 1353eqtr4d 2783 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = 𝐸)
137 ramub1.6 . . . . . . . . 9 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
138137ffnd 6715 . . . . . . . 8 (𝜑𝐾 Fn (𝑆𝐶𝑀))
139 fniniseg 7057 . . . . . . . 8 (𝐾 Fn (𝑆𝐶𝑀) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
14063, 138, 1393syl 18 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
14175, 136, 140mpbir2and 712 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
14260, 141pm2.61dan 812 . . . . 5 (((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) → 𝑥 ∈ (𝐾 “ {𝐸}))
143142rabssdv 4071 . . . 4 ((𝜑𝐸 = 𝐷) → {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
14449, 143eqsstrd 4019 . . 3 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
145 fveq2 6888 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (♯‘𝑧) = (♯‘(𝑉 ∪ {𝑋})))
146145breq2d 5159 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝐹𝐸) ≤ (♯‘𝑧) ↔ (𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋}))))
147 oveq1 7411 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (𝑧𝐶𝑀) = ((𝑉 ∪ {𝑋})𝐶𝑀))
148147sseq1d 4012 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
149146, 148anbi12d 632 . . . 4 (𝑧 = (𝑉 ∪ {𝑋}) → (((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
150149rspcev 3612 . . 3 (((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
15110, 40, 144, 150syl12anc 836 . 2 ((𝜑𝐸 = 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
1521, 5sselpwd 5325 . . . 4 (𝜑𝑉 ∈ 𝒫 𝑆)
153152adantr 482 . . 3 ((𝜑𝐸𝐷) → 𝑉 ∈ 𝒫 𝑆)
154 ifnefalse 4539 . . . . 5 (𝐸𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
155154adantl 483 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
15613adantr 482 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
157155, 156eqbrtrrd 5171 . . 3 ((𝜑𝐸𝐷) → (𝐹𝐸) ≤ (♯‘𝑉))
15853adantr 482 . . 3 ((𝜑𝐸𝐷) → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
159 fveq2 6888 . . . . . 6 (𝑧 = 𝑉 → (♯‘𝑧) = (♯‘𝑉))
160159breq2d 5159 . . . . 5 (𝑧 = 𝑉 → ((𝐹𝐸) ≤ (♯‘𝑧) ↔ (𝐹𝐸) ≤ (♯‘𝑉)))
161 oveq1 7411 . . . . . 6 (𝑧 = 𝑉 → (𝑧𝐶𝑀) = (𝑉𝐶𝑀))
162161sseq1d 4012 . . . . 5 (𝑧 = 𝑉 → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
163160, 162anbi12d 632 . . . 4 (𝑧 = 𝑉 → (((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
164163rspcev 3612 . . 3 ((𝑉 ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
165153, 157, 158, 164syl12anc 836 . 2 ((𝜑𝐸𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
166151, 165pm2.61dane 3030 1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wrex 3071  {crab 3433  Vcvv 3475  cdif 3944  cun 3945  wss 3947  ifcif 4527  𝒫 cpw 4601  {csn 4627   class class class wbr 5147  cmpt 5230  ccnv 5674  cima 5678   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7404  cmpo 7406  Fincfn 8935  cc 11104  cr 11105  1c1 11107   + caddc 11109  cle 11245  cmin 11440  cn 12208  0cn0 12468  chash 14286   Ramsey cram 16928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287
This theorem is referenced by:  ramub1lem2  16956
  Copyright terms: Public domain W3C validator