Proof of Theorem ramub1lem1
| Step | Hyp | Ref
| Expression |
| 1 | | ramub1.4 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Fin) |
| 2 | | ramub1.v |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ⊆ 𝑊) |
| 3 | | ramub1.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ⊆ (𝑆 ∖ {𝑋})) |
| 4 | 2, 3 | sstrd 3976 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ⊆ (𝑆 ∖ {𝑋})) |
| 5 | 4 | difss2d 4121 |
. . . . . 6
⊢ (𝜑 → 𝑉 ⊆ 𝑆) |
| 6 | | ramub1.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 7 | 6 | snssd 4791 |
. . . . . 6
⊢ (𝜑 → {𝑋} ⊆ 𝑆) |
| 8 | 5, 7 | unssd 4174 |
. . . . 5
⊢ (𝜑 → (𝑉 ∪ {𝑋}) ⊆ 𝑆) |
| 9 | 1, 8 | sselpwd 5310 |
. . . 4
⊢ (𝜑 → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆) |
| 10 | 9 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆) |
| 11 | | iftrue 4513 |
. . . . . . 7
⊢ (𝐸 = 𝐷 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) = ((𝐹‘𝐷) − 1)) |
| 12 | 11 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) = ((𝐹‘𝐷) − 1)) |
| 13 | | ramub1.9 |
. . . . . . 7
⊢ (𝜑 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) |
| 15 | 12, 14 | eqbrtrrd 5149 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ((𝐹‘𝐷) − 1) ≤ (♯‘𝑉)) |
| 16 | | ramub1.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑅⟶ℕ) |
| 17 | | ramub1.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑅) |
| 18 | 16, 17 | ffvelcdmd 7086 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐷) ∈ ℕ) |
| 19 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝐹‘𝐷) ∈ ℕ) |
| 20 | 19 | nnred 12264 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝐹‘𝐷) ∈ ℝ) |
| 21 | | 1red 11245 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → 1 ∈ ℝ) |
| 22 | 1, 5 | ssfid 9284 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ Fin) |
| 23 | | hashcl 14378 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin →
(♯‘𝑉) ∈
ℕ0) |
| 24 | | nn0re 12519 |
. . . . . . . 8
⊢
((♯‘𝑉)
∈ ℕ0 → (♯‘𝑉) ∈ ℝ) |
| 25 | 22, 23, 24 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑉) ∈
ℝ) |
| 26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (♯‘𝑉) ∈ ℝ) |
| 27 | 20, 21, 26 | lesubaddd 11843 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (((𝐹‘𝐷) − 1) ≤ (♯‘𝑉) ↔ (𝐹‘𝐷) ≤ ((♯‘𝑉) + 1))) |
| 28 | 15, 27 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝐹‘𝐷) ≤ ((♯‘𝑉) + 1)) |
| 29 | | fveq2 6887 |
. . . . 5
⊢ (𝐸 = 𝐷 → (𝐹‘𝐸) = (𝐹‘𝐷)) |
| 30 | | snidg 4642 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ {𝑋}) |
| 31 | 6, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
| 32 | 4 | sseld 3964 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∈ 𝑉 → 𝑋 ∈ (𝑆 ∖ {𝑋}))) |
| 33 | | eldifn 4114 |
. . . . . . . 8
⊢ (𝑋 ∈ (𝑆 ∖ {𝑋}) → ¬ 𝑋 ∈ {𝑋}) |
| 34 | 32, 33 | syl6 35 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ {𝑋})) |
| 35 | 31, 34 | mt2d 136 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑉) |
| 36 | | hashunsng 14414 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑆 → ((𝑉 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1))) |
| 37 | 6, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑉 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1))) |
| 38 | 22, 35, 37 | mp2and 699 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1)) |
| 39 | 29, 38 | breqan12rd 5142 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ((𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ↔ (𝐹‘𝐷) ≤ ((♯‘𝑉) + 1))) |
| 40 | 28, 39 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → (𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋}))) |
| 41 | | snfi 9066 |
. . . . . . 7
⊢ {𝑋} ∈ Fin |
| 42 | | unfi 9194 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ {𝑋} ∈ Fin) → (𝑉 ∪ {𝑋}) ∈ Fin) |
| 43 | 22, 41, 42 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (𝑉 ∪ {𝑋}) ∈ Fin) |
| 44 | | ramub1.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 45 | 44 | nnnn0d 12571 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 46 | | ramub1.3 |
. . . . . . 7
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| 47 | 46 | hashbcval 17023 |
. . . . . 6
⊢ (((𝑉 ∪ {𝑋}) ∈ Fin ∧ 𝑀 ∈ ℕ0) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀}) |
| 48 | 43, 45, 47 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀}) |
| 49 | 48 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀}) |
| 50 | | simpl1l 1224 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝜑) |
| 51 | 46 | hashbcval 17023 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑀 ∈ ℕ0)
→ (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀}) |
| 52 | 22, 45, 51 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀}) |
| 53 | | ramub1.s |
. . . . . . . . 9
⊢ (𝜑 → (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) |
| 54 | 52, 53 | eqsstrrd 4001 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (◡𝐾 “ {𝐸})) |
| 55 | 50, 54 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (◡𝐾 “ {𝐸})) |
| 56 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑉) |
| 57 | | simpl3 1193 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀) |
| 58 | | rabid 3442 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑉 ∧ (♯‘𝑥) = 𝑀)) |
| 59 | 56, 57, 58 | sylanbrc 583 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀}) |
| 60 | 55, 59 | sseldd 3966 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (◡𝐾 “ {𝐸})) |
| 61 | | simpl2 1192 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋})) |
| 62 | 61 | elpwid 4591 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ (𝑉 ∪ {𝑋})) |
| 63 | | simpl1l 1224 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝜑) |
| 64 | 63, 8 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑉 ∪ {𝑋}) ⊆ 𝑆) |
| 65 | 62, 64 | sstrd 3976 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ 𝑆) |
| 66 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 67 | 66 | elpw 4586 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆) |
| 68 | 65, 67 | sylibr 234 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑆) |
| 69 | | simpl3 1193 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀) |
| 70 | | rabid 3442 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑆 ∧ (♯‘𝑥) = 𝑀)) |
| 71 | 68, 69, 70 | sylanbrc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
| 72 | 46 | hashbcval 17023 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0)
→ (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
| 73 | 1, 45, 72 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
| 74 | 63, 73 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀}) |
| 75 | 71, 74 | eleqtrrd 2836 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝑆𝐶𝑀)) |
| 76 | 3 | difss2d 4121 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑊 ⊆ 𝑆) |
| 77 | 1, 76 | ssfid 9284 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 78 | | nnm1nn0 12551 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈
ℕ0) |
| 79 | 44, 78 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 − 1) ∈
ℕ0) |
| 80 | 46 | hashbcval 17023 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Fin ∧ (𝑀 − 1) ∈
ℕ0) → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)}) |
| 81 | 77, 79, 80 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)}) |
| 82 | | ramub1.8 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (◡𝐻 “ {𝐷})) |
| 83 | 81, 82 | eqsstrrd 4001 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (◡𝐻 “ {𝐷})) |
| 84 | 63, 83 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (◡𝐻 “ {𝐷})) |
| 85 | | fveqeq2 6896 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑥 ∖ {𝑋}) → ((♯‘𝑢) = (𝑀 − 1) ↔ (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1))) |
| 86 | | uncom 4140 |
. . . . . . . . . . . . . . . 16
⊢ (𝑉 ∪ {𝑋}) = ({𝑋} ∪ 𝑉) |
| 87 | 62, 86 | sseqtrdi 4006 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ ({𝑋} ∪ 𝑉)) |
| 88 | | ssundif 4470 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ ({𝑋} ∪ 𝑉) ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑉) |
| 89 | 87, 88 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑉) |
| 90 | 63, 2 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑉 ⊆ 𝑊) |
| 91 | 89, 90 | sstrd 3976 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑊) |
| 92 | 66 | difexi 5312 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∖ {𝑋}) ∈ V |
| 93 | 92 | elpw 4586 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑊) |
| 94 | 91, 93 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊) |
| 95 | 63, 1 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑆 ∈ Fin) |
| 96 | 95, 65 | ssfid 9284 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ Fin) |
| 97 | | diffi 9198 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Fin → (𝑥 ∖ {𝑋}) ∈ Fin) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ Fin) |
| 99 | | hashcl 14378 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∖ {𝑋}) ∈ Fin → (♯‘(𝑥 ∖ {𝑋})) ∈
ℕ0) |
| 100 | | nn0cn 12520 |
. . . . . . . . . . . . . . 15
⊢
((♯‘(𝑥
∖ {𝑋})) ∈
ℕ0 → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ) |
| 101 | 98, 99, 100 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ) |
| 102 | | ax-1cn 11196 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
| 103 | | pncan 11497 |
. . . . . . . . . . . . . 14
⊢
(((♯‘(𝑥
∖ {𝑋})) ∈
ℂ ∧ 1 ∈ ℂ) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋}))) |
| 104 | 101, 102,
103 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋}))) |
| 105 | | neldifsnd 4775 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) |
| 106 | | hashunsng 14414 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ 𝑆 → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1))) |
| 107 | 63, 6, 106 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1))) |
| 108 | 98, 105, 107 | mp2and 699 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1)) |
| 109 | | undif1 4458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∖ {𝑋}) ∪ {𝑋}) = (𝑥 ∪ {𝑋}) |
| 110 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑥 ∈ 𝒫 𝑉) |
| 111 | 61, 110 | eldifd 3944 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉)) |
| 112 | | elpwunsn 4666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉) → 𝑋 ∈ 𝑥) |
| 113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑋 ∈ 𝑥) |
| 114 | 113 | snssd 4791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑋} ⊆ 𝑥) |
| 115 | | ssequn2 4171 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑋} ⊆ 𝑥 ↔ (𝑥 ∪ {𝑋}) = 𝑥) |
| 116 | 114, 115 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∪ {𝑋}) = 𝑥) |
| 117 | 109, 116 | eqtr2id 2782 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 = ((𝑥 ∖ {𝑋}) ∪ {𝑋})) |
| 118 | 117 | fveq2d 6891 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋}))) |
| 119 | 118, 69 | eqtr3d 2771 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝑀) |
| 120 | 108, 119 | eqtr3d 2771 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ((♯‘(𝑥 ∖ {𝑋})) + 1) = 𝑀) |
| 121 | 120 | oveq1d 7429 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (𝑀 − 1)) |
| 122 | 104, 121 | eqtr3d 2771 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)) |
| 123 | 85, 94, 122 | elrabd 3678 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)}) |
| 124 | 84, 123 | sseldd 3966 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ (◡𝐻 “ {𝐷})) |
| 125 | | ramub1.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋}))) |
| 126 | 125 | mptiniseg 6241 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝑅 → (◡𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷}) |
| 127 | 63, 17, 126 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (◡𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷}) |
| 128 | 124, 127 | eleqtrd 2835 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷}) |
| 129 | | uneq1 4143 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑥 ∖ {𝑋}) → (𝑢 ∪ {𝑋}) = ((𝑥 ∖ {𝑋}) ∪ {𝑋})) |
| 130 | 129 | fveqeq2d 6895 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑥 ∖ {𝑋}) → ((𝐾‘(𝑢 ∪ {𝑋})) = 𝐷 ↔ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)) |
| 131 | 130 | elrab 3676 |
. . . . . . . . . 10
⊢ ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} ↔ ((𝑥 ∖ {𝑋}) ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∧ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)) |
| 132 | 131 | simprbi 496 |
. . . . . . . . 9
⊢ ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷) |
| 133 | 128, 132 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷) |
| 134 | 117 | fveq2d 6891 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘𝑥) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋}))) |
| 135 | | simpl1r 1225 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝐸 = 𝐷) |
| 136 | 133, 134,
135 | 3eqtr4d 2779 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘𝑥) = 𝐸) |
| 137 | | ramub1.6 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾:(𝑆𝐶𝑀)⟶𝑅) |
| 138 | 137 | ffnd 6718 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 Fn (𝑆𝐶𝑀)) |
| 139 | | fniniseg 7061 |
. . . . . . . 8
⊢ (𝐾 Fn (𝑆𝐶𝑀) → (𝑥 ∈ (◡𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾‘𝑥) = 𝐸))) |
| 140 | 63, 138, 139 | 3syl 18 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∈ (◡𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾‘𝑥) = 𝐸))) |
| 141 | 75, 136, 140 | mpbir2and 713 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (◡𝐾 “ {𝐸})) |
| 142 | 60, 141 | pm2.61dan 812 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) → 𝑥 ∈ (◡𝐾 “ {𝐸})) |
| 143 | 142 | rabssdv 4057 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀} ⊆ (◡𝐾 “ {𝐸})) |
| 144 | 49, 143 | eqsstrd 4000 |
. . 3
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) |
| 145 | | fveq2 6887 |
. . . . . 6
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → (♯‘𝑧) = (♯‘(𝑉 ∪ {𝑋}))) |
| 146 | 145 | breq2d 5137 |
. . . . 5
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → ((𝐹‘𝐸) ≤ (♯‘𝑧) ↔ (𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})))) |
| 147 | | oveq1 7421 |
. . . . . 6
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → (𝑧𝐶𝑀) = ((𝑉 ∪ {𝑋})𝐶𝑀)) |
| 148 | 147 | sseq1d 3997 |
. . . . 5
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → ((𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}) ↔ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
| 149 | 146, 148 | anbi12d 632 |
. . . 4
⊢ (𝑧 = (𝑉 ∪ {𝑋}) → (((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) ↔ ((𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})))) |
| 150 | 149 | rspcev 3606 |
. . 3
⊢ (((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ ((𝐹‘𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
| 151 | 10, 40, 144, 150 | syl12anc 836 |
. 2
⊢ ((𝜑 ∧ 𝐸 = 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
| 152 | 1, 5 | sselpwd 5310 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ 𝒫 𝑆) |
| 153 | 152 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → 𝑉 ∈ 𝒫 𝑆) |
| 154 | | ifnefalse 4519 |
. . . . 5
⊢ (𝐸 ≠ 𝐷 → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) = (𝐹‘𝐸)) |
| 155 | 154 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) = (𝐹‘𝐸)) |
| 156 | 13 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → if(𝐸 = 𝐷, ((𝐹‘𝐷) − 1), (𝐹‘𝐸)) ≤ (♯‘𝑉)) |
| 157 | 155, 156 | eqbrtrrd 5149 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → (𝐹‘𝐸) ≤ (♯‘𝑉)) |
| 158 | 53 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) |
| 159 | | fveq2 6887 |
. . . . . 6
⊢ (𝑧 = 𝑉 → (♯‘𝑧) = (♯‘𝑉)) |
| 160 | 159 | breq2d 5137 |
. . . . 5
⊢ (𝑧 = 𝑉 → ((𝐹‘𝐸) ≤ (♯‘𝑧) ↔ (𝐹‘𝐸) ≤ (♯‘𝑉))) |
| 161 | | oveq1 7421 |
. . . . . 6
⊢ (𝑧 = 𝑉 → (𝑧𝐶𝑀) = (𝑉𝐶𝑀)) |
| 162 | 161 | sseq1d 3997 |
. . . . 5
⊢ (𝑧 = 𝑉 → ((𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}) ↔ (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
| 163 | 160, 162 | anbi12d 632 |
. . . 4
⊢ (𝑧 = 𝑉 → (((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})) ↔ ((𝐹‘𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸})))) |
| 164 | 163 | rspcev 3606 |
. . 3
⊢ ((𝑉 ∈ 𝒫 𝑆 ∧ ((𝐹‘𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
| 165 | 153, 157,
158, 164 | syl12anc 836 |
. 2
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |
| 166 | 151, 165 | pm2.61dane 3018 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹‘𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (◡𝐾 “ {𝐸}))) |