Step | Hyp | Ref
| Expression |
1 | | ramub1.4 |
. . . . 5
β’ (π β π β Fin) |
2 | | ramub1.v |
. . . . . . . 8
β’ (π β π β π) |
3 | | ramub1.w |
. . . . . . . 8
β’ (π β π β (π β {π})) |
4 | 2, 3 | sstrd 3991 |
. . . . . . 7
β’ (π β π β (π β {π})) |
5 | 4 | difss2d 4133 |
. . . . . 6
β’ (π β π β π) |
6 | | ramub1.x |
. . . . . . 7
β’ (π β π β π) |
7 | 6 | snssd 4811 |
. . . . . 6
β’ (π β {π} β π) |
8 | 5, 7 | unssd 4185 |
. . . . 5
β’ (π β (π βͺ {π}) β π) |
9 | 1, 8 | sselpwd 5325 |
. . . 4
β’ (π β (π βͺ {π}) β π« π) |
10 | 9 | adantr 481 |
. . 3
β’ ((π β§ πΈ = π·) β (π βͺ {π}) β π« π) |
11 | | iftrue 4533 |
. . . . . . 7
β’ (πΈ = π· β if(πΈ = π·, ((πΉβπ·) β 1), (πΉβπΈ)) = ((πΉβπ·) β 1)) |
12 | 11 | adantl 482 |
. . . . . 6
β’ ((π β§ πΈ = π·) β if(πΈ = π·, ((πΉβπ·) β 1), (πΉβπΈ)) = ((πΉβπ·) β 1)) |
13 | | ramub1.9 |
. . . . . . 7
β’ (π β if(πΈ = π·, ((πΉβπ·) β 1), (πΉβπΈ)) β€ (β―βπ)) |
14 | 13 | adantr 481 |
. . . . . 6
β’ ((π β§ πΈ = π·) β if(πΈ = π·, ((πΉβπ·) β 1), (πΉβπΈ)) β€ (β―βπ)) |
15 | 12, 14 | eqbrtrrd 5171 |
. . . . 5
β’ ((π β§ πΈ = π·) β ((πΉβπ·) β 1) β€ (β―βπ)) |
16 | | ramub1.f |
. . . . . . . . 9
β’ (π β πΉ:π
βΆβ) |
17 | | ramub1.d |
. . . . . . . . 9
β’ (π β π· β π
) |
18 | 16, 17 | ffvelcdmd 7084 |
. . . . . . . 8
β’ (π β (πΉβπ·) β β) |
19 | 18 | adantr 481 |
. . . . . . 7
β’ ((π β§ πΈ = π·) β (πΉβπ·) β β) |
20 | 19 | nnred 12223 |
. . . . . 6
β’ ((π β§ πΈ = π·) β (πΉβπ·) β β) |
21 | | 1red 11211 |
. . . . . 6
β’ ((π β§ πΈ = π·) β 1 β β) |
22 | 1, 5 | ssfid 9263 |
. . . . . . . 8
β’ (π β π β Fin) |
23 | | hashcl 14312 |
. . . . . . . 8
β’ (π β Fin β
(β―βπ) β
β0) |
24 | | nn0re 12477 |
. . . . . . . 8
β’
((β―βπ)
β β0 β (β―βπ) β β) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . 7
β’ (π β (β―βπ) β
β) |
26 | 25 | adantr 481 |
. . . . . 6
β’ ((π β§ πΈ = π·) β (β―βπ) β β) |
27 | 20, 21, 26 | lesubaddd 11807 |
. . . . 5
β’ ((π β§ πΈ = π·) β (((πΉβπ·) β 1) β€ (β―βπ) β (πΉβπ·) β€ ((β―βπ) + 1))) |
28 | 15, 27 | mpbid 231 |
. . . 4
β’ ((π β§ πΈ = π·) β (πΉβπ·) β€ ((β―βπ) + 1)) |
29 | | fveq2 6888 |
. . . . 5
β’ (πΈ = π· β (πΉβπΈ) = (πΉβπ·)) |
30 | | snidg 4661 |
. . . . . . . 8
β’ (π β π β π β {π}) |
31 | 6, 30 | syl 17 |
. . . . . . 7
β’ (π β π β {π}) |
32 | 4 | sseld 3980 |
. . . . . . . 8
β’ (π β (π β π β π β (π β {π}))) |
33 | | eldifn 4126 |
. . . . . . . 8
β’ (π β (π β {π}) β Β¬ π β {π}) |
34 | 32, 33 | syl6 35 |
. . . . . . 7
β’ (π β (π β π β Β¬ π β {π})) |
35 | 31, 34 | mt2d 136 |
. . . . . 6
β’ (π β Β¬ π β π) |
36 | | hashunsng 14348 |
. . . . . . 7
β’ (π β π β ((π β Fin β§ Β¬ π β π) β (β―β(π βͺ {π})) = ((β―βπ) + 1))) |
37 | 6, 36 | syl 17 |
. . . . . 6
β’ (π β ((π β Fin β§ Β¬ π β π) β (β―β(π βͺ {π})) = ((β―βπ) + 1))) |
38 | 22, 35, 37 | mp2and 697 |
. . . . 5
β’ (π β (β―β(π βͺ {π})) = ((β―βπ) + 1)) |
39 | 29, 38 | breqan12rd 5164 |
. . . 4
β’ ((π β§ πΈ = π·) β ((πΉβπΈ) β€ (β―β(π βͺ {π})) β (πΉβπ·) β€ ((β―βπ) + 1))) |
40 | 28, 39 | mpbird 256 |
. . 3
β’ ((π β§ πΈ = π·) β (πΉβπΈ) β€ (β―β(π βͺ {π}))) |
41 | | snfi 9040 |
. . . . . . 7
β’ {π} β Fin |
42 | | unfi 9168 |
. . . . . . 7
β’ ((π β Fin β§ {π} β Fin) β (π βͺ {π}) β Fin) |
43 | 22, 41, 42 | sylancl 586 |
. . . . . 6
β’ (π β (π βͺ {π}) β Fin) |
44 | | ramub1.m |
. . . . . . 7
β’ (π β π β β) |
45 | 44 | nnnn0d 12528 |
. . . . . 6
β’ (π β π β
β0) |
46 | | ramub1.3 |
. . . . . . 7
β’ πΆ = (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π}) |
47 | 46 | hashbcval 16931 |
. . . . . 6
β’ (((π βͺ {π}) β Fin β§ π β β0) β ((π βͺ {π})πΆπ) = {π₯ β π« (π βͺ {π}) β£ (β―βπ₯) = π}) |
48 | 43, 45, 47 | syl2anc 584 |
. . . . 5
β’ (π β ((π βͺ {π})πΆπ) = {π₯ β π« (π βͺ {π}) β£ (β―βπ₯) = π}) |
49 | 48 | adantr 481 |
. . . 4
β’ ((π β§ πΈ = π·) β ((π βͺ {π})πΆπ) = {π₯ β π« (π βͺ {π}) β£ (β―βπ₯) = π}) |
50 | | simpl1l 1224 |
. . . . . . . 8
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ π₯ β π« π) β π) |
51 | 46 | hashbcval 16931 |
. . . . . . . . . 10
β’ ((π β Fin β§ π β β0)
β (ππΆπ) = {π₯ β π« π β£ (β―βπ₯) = π}) |
52 | 22, 45, 51 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (ππΆπ) = {π₯ β π« π β£ (β―βπ₯) = π}) |
53 | | ramub1.s |
. . . . . . . . 9
β’ (π β (ππΆπ) β (β‘πΎ β {πΈ})) |
54 | 52, 53 | eqsstrrd 4020 |
. . . . . . . 8
β’ (π β {π₯ β π« π β£ (β―βπ₯) = π} β (β‘πΎ β {πΈ})) |
55 | 50, 54 | syl 17 |
. . . . . . 7
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ π₯ β π« π) β {π₯ β π« π β£ (β―βπ₯) = π} β (β‘πΎ β {πΈ})) |
56 | | simpr 485 |
. . . . . . . 8
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ π₯ β π« π) β π₯ β π« π) |
57 | | simpl3 1193 |
. . . . . . . 8
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ π₯ β π« π) β (β―βπ₯) = π) |
58 | | rabid 3452 |
. . . . . . . 8
β’ (π₯ β {π₯ β π« π β£ (β―βπ₯) = π} β (π₯ β π« π β§ (β―βπ₯) = π)) |
59 | 56, 57, 58 | sylanbrc 583 |
. . . . . . 7
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ π₯ β π« π) β π₯ β {π₯ β π« π β£ (β―βπ₯) = π}) |
60 | 55, 59 | sseldd 3982 |
. . . . . 6
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ π₯ β π« π) β π₯ β (β‘πΎ β {πΈ})) |
61 | | simpl2 1192 |
. . . . . . . . . . . 12
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β π« (π βͺ {π})) |
62 | 61 | elpwid 4610 |
. . . . . . . . . . 11
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β (π βͺ {π})) |
63 | | simpl1l 1224 |
. . . . . . . . . . . 12
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π) |
64 | 63, 8 | syl 17 |
. . . . . . . . . . 11
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π βͺ {π}) β π) |
65 | 62, 64 | sstrd 3991 |
. . . . . . . . . 10
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β π) |
66 | | vex 3478 |
. . . . . . . . . . 11
β’ π₯ β V |
67 | 66 | elpw 4605 |
. . . . . . . . . 10
β’ (π₯ β π« π β π₯ β π) |
68 | 65, 67 | sylibr 233 |
. . . . . . . . 9
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β π« π) |
69 | | simpl3 1193 |
. . . . . . . . 9
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (β―βπ₯) = π) |
70 | | rabid 3452 |
. . . . . . . . 9
β’ (π₯ β {π₯ β π« π β£ (β―βπ₯) = π} β (π₯ β π« π β§ (β―βπ₯) = π)) |
71 | 68, 69, 70 | sylanbrc 583 |
. . . . . . . 8
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β {π₯ β π« π β£ (β―βπ₯) = π}) |
72 | 46 | hashbcval 16931 |
. . . . . . . . . 10
β’ ((π β Fin β§ π β β0)
β (ππΆπ) = {π₯ β π« π β£ (β―βπ₯) = π}) |
73 | 1, 45, 72 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (ππΆπ) = {π₯ β π« π β£ (β―βπ₯) = π}) |
74 | 63, 73 | syl 17 |
. . . . . . . 8
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (ππΆπ) = {π₯ β π« π β£ (β―βπ₯) = π}) |
75 | 71, 74 | eleqtrrd 2836 |
. . . . . . 7
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β (ππΆπ)) |
76 | 3 | difss2d 4133 |
. . . . . . . . . . . . . . 15
β’ (π β π β π) |
77 | 1, 76 | ssfid 9263 |
. . . . . . . . . . . . . 14
β’ (π β π β Fin) |
78 | | nnm1nn0 12509 |
. . . . . . . . . . . . . . 15
β’ (π β β β (π β 1) β
β0) |
79 | 44, 78 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (π β 1) β
β0) |
80 | 46 | hashbcval 16931 |
. . . . . . . . . . . . . 14
β’ ((π β Fin β§ (π β 1) β
β0) β (ππΆ(π β 1)) = {π’ β π« π β£ (β―βπ’) = (π β 1)}) |
81 | 77, 79, 80 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (π β (ππΆ(π β 1)) = {π’ β π« π β£ (β―βπ’) = (π β 1)}) |
82 | | ramub1.8 |
. . . . . . . . . . . . 13
β’ (π β (ππΆ(π β 1)) β (β‘π» β {π·})) |
83 | 81, 82 | eqsstrrd 4020 |
. . . . . . . . . . . 12
β’ (π β {π’ β π« π β£ (β―βπ’) = (π β 1)} β (β‘π» β {π·})) |
84 | 63, 83 | syl 17 |
. . . . . . . . . . 11
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β {π’ β π« π β£ (β―βπ’) = (π β 1)} β (β‘π» β {π·})) |
85 | | fveqeq2 6897 |
. . . . . . . . . . . 12
β’ (π’ = (π₯ β {π}) β ((β―βπ’) = (π β 1) β (β―β(π₯ β {π})) = (π β 1))) |
86 | | uncom 4152 |
. . . . . . . . . . . . . . . 16
β’ (π βͺ {π}) = ({π} βͺ π) |
87 | 62, 86 | sseqtrdi 4031 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β ({π} βͺ π)) |
88 | | ssundif 4486 |
. . . . . . . . . . . . . . 15
β’ (π₯ β ({π} βͺ π) β (π₯ β {π}) β π) |
89 | 87, 88 | sylib 217 |
. . . . . . . . . . . . . 14
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ β {π}) β π) |
90 | 63, 2 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π β π) |
91 | 89, 90 | sstrd 3991 |
. . . . . . . . . . . . 13
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ β {π}) β π) |
92 | 66 | difexi 5327 |
. . . . . . . . . . . . . 14
β’ (π₯ β {π}) β V |
93 | 92 | elpw 4605 |
. . . . . . . . . . . . 13
β’ ((π₯ β {π}) β π« π β (π₯ β {π}) β π) |
94 | 91, 93 | sylibr 233 |
. . . . . . . . . . . 12
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ β {π}) β π« π) |
95 | 63, 1 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π β Fin) |
96 | 95, 65 | ssfid 9263 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β Fin) |
97 | | diffi 9175 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β Fin β (π₯ β {π}) β Fin) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ β {π}) β Fin) |
99 | | hashcl 14312 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β {π}) β Fin β (β―β(π₯ β {π})) β
β0) |
100 | | nn0cn 12478 |
. . . . . . . . . . . . . . 15
β’
((β―β(π₯
β {π})) β
β0 β (β―β(π₯ β {π})) β β) |
101 | 98, 99, 100 | 3syl 18 |
. . . . . . . . . . . . . 14
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (β―β(π₯ β {π})) β β) |
102 | | ax-1cn 11164 |
. . . . . . . . . . . . . 14
β’ 1 β
β |
103 | | pncan 11462 |
. . . . . . . . . . . . . 14
β’
(((β―β(π₯
β {π})) β
β β§ 1 β β) β (((β―β(π₯ β {π})) + 1) β 1) = (β―β(π₯ β {π}))) |
104 | 101, 102,
103 | sylancl 586 |
. . . . . . . . . . . . 13
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (((β―β(π₯ β {π})) + 1) β 1) = (β―β(π₯ β {π}))) |
105 | | neldifsnd 4795 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β Β¬ π β (π₯ β {π})) |
106 | | hashunsng 14348 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β (((π₯ β {π}) β Fin β§ Β¬ π β (π₯ β {π})) β (β―β((π₯ β {π}) βͺ {π})) = ((β―β(π₯ β {π})) + 1))) |
107 | 63, 6, 106 | 3syl 18 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (((π₯ β {π}) β Fin β§ Β¬ π β (π₯ β {π})) β (β―β((π₯ β {π}) βͺ {π})) = ((β―β(π₯ β {π})) + 1))) |
108 | 98, 105, 107 | mp2and 697 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (β―β((π₯ β {π}) βͺ {π})) = ((β―β(π₯ β {π})) + 1)) |
109 | | undif1 4474 |
. . . . . . . . . . . . . . . . . 18
β’ ((π₯ β {π}) βͺ {π}) = (π₯ βͺ {π}) |
110 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β Β¬ π₯ β π« π) |
111 | 61, 110 | eldifd 3958 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β (π« (π βͺ {π}) β π« π)) |
112 | | elpwunsn 4686 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ β (π« (π βͺ {π}) β π« π) β π β π₯) |
113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π β π₯) |
114 | 113 | snssd 4811 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β {π} β π₯) |
115 | | ssequn2 4182 |
. . . . . . . . . . . . . . . . . . 19
β’ ({π} β π₯ β (π₯ βͺ {π}) = π₯) |
116 | 114, 115 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ βͺ {π}) = π₯) |
117 | 109, 116 | eqtr2id 2785 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ = ((π₯ β {π}) βͺ {π})) |
118 | 117 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (β―βπ₯) = (β―β((π₯ β {π}) βͺ {π}))) |
119 | 118, 69 | eqtr3d 2774 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (β―β((π₯ β {π}) βͺ {π})) = π) |
120 | 108, 119 | eqtr3d 2774 |
. . . . . . . . . . . . . 14
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β ((β―β(π₯ β {π})) + 1) = π) |
121 | 120 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (((β―β(π₯ β {π})) + 1) β 1) = (π β 1)) |
122 | 104, 121 | eqtr3d 2774 |
. . . . . . . . . . . 12
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (β―β(π₯ β {π})) = (π β 1)) |
123 | 85, 94, 122 | elrabd 3684 |
. . . . . . . . . . 11
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ β {π}) β {π’ β π« π β£ (β―βπ’) = (π β 1)}) |
124 | 84, 123 | sseldd 3982 |
. . . . . . . . . 10
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ β {π}) β (β‘π» β {π·})) |
125 | | ramub1.h |
. . . . . . . . . . . 12
β’ π» = (π’ β ((π β {π})πΆ(π β 1)) β¦ (πΎβ(π’ βͺ {π}))) |
126 | 125 | mptiniseg 6235 |
. . . . . . . . . . 11
β’ (π· β π
β (β‘π» β {π·}) = {π’ β ((π β {π})πΆ(π β 1)) β£ (πΎβ(π’ βͺ {π})) = π·}) |
127 | 63, 17, 126 | 3syl 18 |
. . . . . . . . . 10
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (β‘π» β {π·}) = {π’ β ((π β {π})πΆ(π β 1)) β£ (πΎβ(π’ βͺ {π})) = π·}) |
128 | 124, 127 | eleqtrd 2835 |
. . . . . . . . 9
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ β {π}) β {π’ β ((π β {π})πΆ(π β 1)) β£ (πΎβ(π’ βͺ {π})) = π·}) |
129 | | uneq1 4155 |
. . . . . . . . . . . 12
β’ (π’ = (π₯ β {π}) β (π’ βͺ {π}) = ((π₯ β {π}) βͺ {π})) |
130 | 129 | fveqeq2d 6896 |
. . . . . . . . . . 11
β’ (π’ = (π₯ β {π}) β ((πΎβ(π’ βͺ {π})) = π· β (πΎβ((π₯ β {π}) βͺ {π})) = π·)) |
131 | 130 | elrab 3682 |
. . . . . . . . . 10
β’ ((π₯ β {π}) β {π’ β ((π β {π})πΆ(π β 1)) β£ (πΎβ(π’ βͺ {π})) = π·} β ((π₯ β {π}) β ((π β {π})πΆ(π β 1)) β§ (πΎβ((π₯ β {π}) βͺ {π})) = π·)) |
132 | 131 | simprbi 497 |
. . . . . . . . 9
β’ ((π₯ β {π}) β {π’ β ((π β {π})πΆ(π β 1)) β£ (πΎβ(π’ βͺ {π})) = π·} β (πΎβ((π₯ β {π}) βͺ {π})) = π·) |
133 | 128, 132 | syl 17 |
. . . . . . . 8
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (πΎβ((π₯ β {π}) βͺ {π})) = π·) |
134 | 117 | fveq2d 6892 |
. . . . . . . 8
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (πΎβπ₯) = (πΎβ((π₯ β {π}) βͺ {π}))) |
135 | | simpl1r 1225 |
. . . . . . . 8
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β πΈ = π·) |
136 | 133, 134,
135 | 3eqtr4d 2782 |
. . . . . . 7
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (πΎβπ₯) = πΈ) |
137 | | ramub1.6 |
. . . . . . . . 9
β’ (π β πΎ:(ππΆπ)βΆπ
) |
138 | 137 | ffnd 6715 |
. . . . . . . 8
β’ (π β πΎ Fn (ππΆπ)) |
139 | | fniniseg 7058 |
. . . . . . . 8
β’ (πΎ Fn (ππΆπ) β (π₯ β (β‘πΎ β {πΈ}) β (π₯ β (ππΆπ) β§ (πΎβπ₯) = πΈ))) |
140 | 63, 138, 139 | 3syl 18 |
. . . . . . 7
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β (π₯ β (β‘πΎ β {πΈ}) β (π₯ β (ππΆπ) β§ (πΎβπ₯) = πΈ))) |
141 | 75, 136, 140 | mpbir2and 711 |
. . . . . 6
β’ ((((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β§ Β¬ π₯ β π« π) β π₯ β (β‘πΎ β {πΈ})) |
142 | 60, 141 | pm2.61dan 811 |
. . . . 5
β’ (((π β§ πΈ = π·) β§ π₯ β π« (π βͺ {π}) β§ (β―βπ₯) = π) β π₯ β (β‘πΎ β {πΈ})) |
143 | 142 | rabssdv 4071 |
. . . 4
β’ ((π β§ πΈ = π·) β {π₯ β π« (π βͺ {π}) β£ (β―βπ₯) = π} β (β‘πΎ β {πΈ})) |
144 | 49, 143 | eqsstrd 4019 |
. . 3
β’ ((π β§ πΈ = π·) β ((π βͺ {π})πΆπ) β (β‘πΎ β {πΈ})) |
145 | | fveq2 6888 |
. . . . . 6
β’ (π§ = (π βͺ {π}) β (β―βπ§) = (β―β(π βͺ {π}))) |
146 | 145 | breq2d 5159 |
. . . . 5
β’ (π§ = (π βͺ {π}) β ((πΉβπΈ) β€ (β―βπ§) β (πΉβπΈ) β€ (β―β(π βͺ {π})))) |
147 | | oveq1 7412 |
. . . . . 6
β’ (π§ = (π βͺ {π}) β (π§πΆπ) = ((π βͺ {π})πΆπ)) |
148 | 147 | sseq1d 4012 |
. . . . 5
β’ (π§ = (π βͺ {π}) β ((π§πΆπ) β (β‘πΎ β {πΈ}) β ((π βͺ {π})πΆπ) β (β‘πΎ β {πΈ}))) |
149 | 146, 148 | anbi12d 631 |
. . . 4
β’ (π§ = (π βͺ {π}) β (((πΉβπΈ) β€ (β―βπ§) β§ (π§πΆπ) β (β‘πΎ β {πΈ})) β ((πΉβπΈ) β€ (β―β(π βͺ {π})) β§ ((π βͺ {π})πΆπ) β (β‘πΎ β {πΈ})))) |
150 | 149 | rspcev 3612 |
. . 3
β’ (((π βͺ {π}) β π« π β§ ((πΉβπΈ) β€ (β―β(π βͺ {π})) β§ ((π βͺ {π})πΆπ) β (β‘πΎ β {πΈ}))) β βπ§ β π« π((πΉβπΈ) β€ (β―βπ§) β§ (π§πΆπ) β (β‘πΎ β {πΈ}))) |
151 | 10, 40, 144, 150 | syl12anc 835 |
. 2
β’ ((π β§ πΈ = π·) β βπ§ β π« π((πΉβπΈ) β€ (β―βπ§) β§ (π§πΆπ) β (β‘πΎ β {πΈ}))) |
152 | 1, 5 | sselpwd 5325 |
. . . 4
β’ (π β π β π« π) |
153 | 152 | adantr 481 |
. . 3
β’ ((π β§ πΈ β π·) β π β π« π) |
154 | | ifnefalse 4539 |
. . . . 5
β’ (πΈ β π· β if(πΈ = π·, ((πΉβπ·) β 1), (πΉβπΈ)) = (πΉβπΈ)) |
155 | 154 | adantl 482 |
. . . 4
β’ ((π β§ πΈ β π·) β if(πΈ = π·, ((πΉβπ·) β 1), (πΉβπΈ)) = (πΉβπΈ)) |
156 | 13 | adantr 481 |
. . . 4
β’ ((π β§ πΈ β π·) β if(πΈ = π·, ((πΉβπ·) β 1), (πΉβπΈ)) β€ (β―βπ)) |
157 | 155, 156 | eqbrtrrd 5171 |
. . 3
β’ ((π β§ πΈ β π·) β (πΉβπΈ) β€ (β―βπ)) |
158 | 53 | adantr 481 |
. . 3
β’ ((π β§ πΈ β π·) β (ππΆπ) β (β‘πΎ β {πΈ})) |
159 | | fveq2 6888 |
. . . . . 6
β’ (π§ = π β (β―βπ§) = (β―βπ)) |
160 | 159 | breq2d 5159 |
. . . . 5
β’ (π§ = π β ((πΉβπΈ) β€ (β―βπ§) β (πΉβπΈ) β€ (β―βπ))) |
161 | | oveq1 7412 |
. . . . . 6
β’ (π§ = π β (π§πΆπ) = (ππΆπ)) |
162 | 161 | sseq1d 4012 |
. . . . 5
β’ (π§ = π β ((π§πΆπ) β (β‘πΎ β {πΈ}) β (ππΆπ) β (β‘πΎ β {πΈ}))) |
163 | 160, 162 | anbi12d 631 |
. . . 4
β’ (π§ = π β (((πΉβπΈ) β€ (β―βπ§) β§ (π§πΆπ) β (β‘πΎ β {πΈ})) β ((πΉβπΈ) β€ (β―βπ) β§ (ππΆπ) β (β‘πΎ β {πΈ})))) |
164 | 163 | rspcev 3612 |
. . 3
β’ ((π β π« π β§ ((πΉβπΈ) β€ (β―βπ) β§ (ππΆπ) β (β‘πΎ β {πΈ}))) β βπ§ β π« π((πΉβπΈ) β€ (β―βπ§) β§ (π§πΆπ) β (β‘πΎ β {πΈ}))) |
165 | 153, 157,
158, 164 | syl12anc 835 |
. 2
β’ ((π β§ πΈ β π·) β βπ§ β π« π((πΉβπΈ) β€ (β―βπ§) β§ (π§πΆπ) β (β‘πΎ β {πΈ}))) |
166 | 151, 165 | pm2.61dane 3029 |
1
β’ (π β βπ§ β π« π((πΉβπΈ) β€ (β―βπ§) β§ (π§πΆπ) β (β‘πΎ β {πΈ}))) |