MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem1 Structured version   Visualization version   GIF version

Theorem ramub1lem1 16727
Description: Lemma for ramub1 16729. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
ramub1.d (𝜑𝐷𝑅)
ramub1.w (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
ramub1.7 (𝜑 → (𝐺𝐷) ≤ (♯‘𝑊))
ramub1.8 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
ramub1.e (𝜑𝐸𝑅)
ramub1.v (𝜑𝑉𝑊)
ramub1.9 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
ramub1.s (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
Assertion
Ref Expression
ramub1lem1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Distinct variable groups:   𝑥,𝑢,𝐷   𝑦,𝑢,𝑧,𝐹,𝑥   𝑎,𝑏,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑢,𝑅,𝑥,𝑦,𝑧   𝑊,𝑎,𝑖,𝑢   𝜑,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑉,𝑎,𝑖,𝑥,𝑧   𝑢,𝐶,𝑥,𝑦,𝑧   𝑢,𝐻,𝑥,𝑦,𝑧   𝑢,𝐾,𝑥,𝑦,𝑧   𝑥,𝐸,𝑧   𝑋,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐸(𝑦,𝑢,𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑉(𝑦,𝑢,𝑏)   𝑊(𝑥,𝑦,𝑧,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem1
StepHypRef Expression
1 ramub1.4 . . . . 5 (𝜑𝑆 ∈ Fin)
2 ramub1.v . . . . . . . 8 (𝜑𝑉𝑊)
3 ramub1.w . . . . . . . 8 (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
42, 3sstrd 3931 . . . . . . 7 (𝜑𝑉 ⊆ (𝑆 ∖ {𝑋}))
54difss2d 4069 . . . . . 6 (𝜑𝑉𝑆)
6 ramub1.x . . . . . . 7 (𝜑𝑋𝑆)
76snssd 4742 . . . . . 6 (𝜑 → {𝑋} ⊆ 𝑆)
85, 7unssd 4120 . . . . 5 (𝜑 → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
91, 8sselpwd 5250 . . . 4 (𝜑 → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
109adantr 481 . . 3 ((𝜑𝐸 = 𝐷) → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
11 iftrue 4465 . . . . . . 7 (𝐸 = 𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
1211adantl 482 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
13 ramub1.9 . . . . . . 7 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
1413adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
1512, 14eqbrtrrd 5098 . . . . 5 ((𝜑𝐸 = 𝐷) → ((𝐹𝐷) − 1) ≤ (♯‘𝑉))
16 ramub1.f . . . . . . . . 9 (𝜑𝐹:𝑅⟶ℕ)
17 ramub1.d . . . . . . . . 9 (𝜑𝐷𝑅)
1816, 17ffvelrnd 6962 . . . . . . . 8 (𝜑 → (𝐹𝐷) ∈ ℕ)
1918adantr 481 . . . . . . 7 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℕ)
2019nnred 11988 . . . . . 6 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℝ)
21 1red 10976 . . . . . 6 ((𝜑𝐸 = 𝐷) → 1 ∈ ℝ)
221, 5ssfid 9042 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
23 hashcl 14071 . . . . . . . 8 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
24 nn0re 12242 . . . . . . . 8 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
2522, 23, 243syl 18 . . . . . . 7 (𝜑 → (♯‘𝑉) ∈ ℝ)
2625adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐷) → (♯‘𝑉) ∈ ℝ)
2720, 21, 26lesubaddd 11572 . . . . 5 ((𝜑𝐸 = 𝐷) → (((𝐹𝐷) − 1) ≤ (♯‘𝑉) ↔ (𝐹𝐷) ≤ ((♯‘𝑉) + 1)))
2815, 27mpbid 231 . . . 4 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ≤ ((♯‘𝑉) + 1))
29 fveq2 6774 . . . . 5 (𝐸 = 𝐷 → (𝐹𝐸) = (𝐹𝐷))
30 snidg 4595 . . . . . . . 8 (𝑋𝑆𝑋 ∈ {𝑋})
316, 30syl 17 . . . . . . 7 (𝜑𝑋 ∈ {𝑋})
324sseld 3920 . . . . . . . 8 (𝜑 → (𝑋𝑉𝑋 ∈ (𝑆 ∖ {𝑋})))
33 eldifn 4062 . . . . . . . 8 (𝑋 ∈ (𝑆 ∖ {𝑋}) → ¬ 𝑋 ∈ {𝑋})
3432, 33syl6 35 . . . . . . 7 (𝜑 → (𝑋𝑉 → ¬ 𝑋 ∈ {𝑋}))
3531, 34mt2d 136 . . . . . 6 (𝜑 → ¬ 𝑋𝑉)
36 hashunsng 14107 . . . . . . 7 (𝑋𝑆 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1)))
376, 36syl 17 . . . . . 6 (𝜑 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1)))
3822, 35, 37mp2and 696 . . . . 5 (𝜑 → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1))
3929, 38breqan12rd 5091 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ↔ (𝐹𝐷) ≤ ((♯‘𝑉) + 1)))
4028, 39mpbird 256 . . 3 ((𝜑𝐸 = 𝐷) → (𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})))
41 snfi 8834 . . . . . . 7 {𝑋} ∈ Fin
42 unfi 8955 . . . . . . 7 ((𝑉 ∈ Fin ∧ {𝑋} ∈ Fin) → (𝑉 ∪ {𝑋}) ∈ Fin)
4322, 41, 42sylancl 586 . . . . . 6 (𝜑 → (𝑉 ∪ {𝑋}) ∈ Fin)
44 ramub1.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
4544nnnn0d 12293 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
46 ramub1.3 . . . . . . 7 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
4746hashbcval 16703 . . . . . 6 (((𝑉 ∪ {𝑋}) ∈ Fin ∧ 𝑀 ∈ ℕ0) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
4843, 45, 47syl2anc 584 . . . . 5 (𝜑 → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
4948adantr 481 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
50 simpl1l 1223 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
5146hashbcval 16703 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
5222, 45, 51syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
53 ramub1.s . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
5452, 53eqsstrrd 3960 . . . . . . . 8 (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
5550, 54syl 17 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
56 simpr 485 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑉)
57 simpl3 1192 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀)
58 rabid 3310 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑉 ∧ (♯‘𝑥) = 𝑀))
5956, 57, 58sylanbrc 583 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
6055, 59sseldd 3922 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
61 simpl2 1191 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}))
6261elpwid 4544 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ (𝑉 ∪ {𝑋}))
63 simpl1l 1223 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
6463, 8syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
6562, 64sstrd 3931 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥𝑆)
66 vex 3436 . . . . . . . . . . 11 𝑥 ∈ V
6766elpw 4537 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
6865, 67sylibr 233 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑆)
69 simpl3 1192 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀)
70 rabid 3310 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑆 ∧ (♯‘𝑥) = 𝑀))
7168, 69, 70sylanbrc 583 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7246hashbcval 16703 . . . . . . . . . 10 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
731, 45, 72syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7463, 73syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7571, 74eleqtrrd 2842 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝑆𝐶𝑀))
763difss2d 4069 . . . . . . . . . . . . . . 15 (𝜑𝑊𝑆)
771, 76ssfid 9042 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ Fin)
78 nnm1nn0 12274 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
7944, 78syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ∈ ℕ0)
8046hashbcval 16703 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
8177, 79, 80syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
82 ramub1.8 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
8381, 82eqsstrrd 3960 . . . . . . . . . . . 12 (𝜑 → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
8463, 83syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
85 fveqeq2 6783 . . . . . . . . . . . 12 (𝑢 = (𝑥 ∖ {𝑋}) → ((♯‘𝑢) = (𝑀 − 1) ↔ (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)))
86 uncom 4087 . . . . . . . . . . . . . . . 16 (𝑉 ∪ {𝑋}) = ({𝑋} ∪ 𝑉)
8762, 86sseqtrdi 3971 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ ({𝑋} ∪ 𝑉))
88 ssundif 4418 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ({𝑋} ∪ 𝑉) ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑉)
8987, 88sylib 217 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑉)
9063, 2syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑉𝑊)
9189, 90sstrd 3931 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑊)
9266difexi 5252 . . . . . . . . . . . . . 14 (𝑥 ∖ {𝑋}) ∈ V
9392elpw 4537 . . . . . . . . . . . . 13 ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑊)
9491, 93sylibr 233 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊)
9563, 1syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑆 ∈ Fin)
9695, 65ssfid 9042 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ Fin)
97 diffi 8962 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin → (𝑥 ∖ {𝑋}) ∈ Fin)
9896, 97syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ Fin)
99 hashcl 14071 . . . . . . . . . . . . . . 15 ((𝑥 ∖ {𝑋}) ∈ Fin → (♯‘(𝑥 ∖ {𝑋})) ∈ ℕ0)
100 nn0cn 12243 . . . . . . . . . . . . . . 15 ((♯‘(𝑥 ∖ {𝑋})) ∈ ℕ0 → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ)
10198, 99, 1003syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ)
102 ax-1cn 10929 . . . . . . . . . . . . . 14 1 ∈ ℂ
103 pncan 11227 . . . . . . . . . . . . . 14 (((♯‘(𝑥 ∖ {𝑋})) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋})))
104101, 102, 103sylancl 586 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋})))
105 neldifsnd 4726 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑋 ∈ (𝑥 ∖ {𝑋}))
106 hashunsng 14107 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1)))
10763, 6, 1063syl 18 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1)))
10898, 105, 107mp2and 696 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1))
109 undif1 4409 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∖ {𝑋}) ∪ {𝑋}) = (𝑥 ∪ {𝑋})
110 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑥 ∈ 𝒫 𝑉)
11161, 110eldifd 3898 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉))
112 elpwunsn 4619 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉) → 𝑋𝑥)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑋𝑥)
114113snssd 4742 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑋} ⊆ 𝑥)
115 ssequn2 4117 . . . . . . . . . . . . . . . . . . 19 ({𝑋} ⊆ 𝑥 ↔ (𝑥 ∪ {𝑋}) = 𝑥)
116114, 115sylib 217 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∪ {𝑋}) = 𝑥)
117109, 116eqtr2id 2791 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
118117fveq2d 6778 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
119118, 69eqtr3d 2780 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝑀)
120108, 119eqtr3d 2780 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ((♯‘(𝑥 ∖ {𝑋})) + 1) = 𝑀)
121120oveq1d 7290 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (𝑀 − 1))
122104, 121eqtr3d 2780 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1))
12385, 94, 122elrabd 3626 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
12484, 123sseldd 3922 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ (𝐻 “ {𝐷}))
125 ramub1.h . . . . . . . . . . . 12 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
126125mptiniseg 6142 . . . . . . . . . . 11 (𝐷𝑅 → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
12763, 17, 1263syl 18 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
128124, 127eleqtrd 2841 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
129 uneq1 4090 . . . . . . . . . . . 12 (𝑢 = (𝑥 ∖ {𝑋}) → (𝑢 ∪ {𝑋}) = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
130129fveqeq2d 6782 . . . . . . . . . . 11 (𝑢 = (𝑥 ∖ {𝑋}) → ((𝐾‘(𝑢 ∪ {𝑋})) = 𝐷 ↔ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
131130elrab 3624 . . . . . . . . . 10 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} ↔ ((𝑥 ∖ {𝑋}) ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∧ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
132131simprbi 497 . . . . . . . . 9 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
133128, 132syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
134117fveq2d 6778 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
135 simpl1r 1224 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝐸 = 𝐷)
136133, 134, 1353eqtr4d 2788 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = 𝐸)
137 ramub1.6 . . . . . . . . 9 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
138137ffnd 6601 . . . . . . . 8 (𝜑𝐾 Fn (𝑆𝐶𝑀))
139 fniniseg 6937 . . . . . . . 8 (𝐾 Fn (𝑆𝐶𝑀) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
14063, 138, 1393syl 18 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
14175, 136, 140mpbir2and 710 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
14260, 141pm2.61dan 810 . . . . 5 (((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) → 𝑥 ∈ (𝐾 “ {𝐸}))
143142rabssdv 4008 . . . 4 ((𝜑𝐸 = 𝐷) → {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
14449, 143eqsstrd 3959 . . 3 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
145 fveq2 6774 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (♯‘𝑧) = (♯‘(𝑉 ∪ {𝑋})))
146145breq2d 5086 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝐹𝐸) ≤ (♯‘𝑧) ↔ (𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋}))))
147 oveq1 7282 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (𝑧𝐶𝑀) = ((𝑉 ∪ {𝑋})𝐶𝑀))
148147sseq1d 3952 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
149146, 148anbi12d 631 . . . 4 (𝑧 = (𝑉 ∪ {𝑋}) → (((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
150149rspcev 3561 . . 3 (((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
15110, 40, 144, 150syl12anc 834 . 2 ((𝜑𝐸 = 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
1521, 5sselpwd 5250 . . . 4 (𝜑𝑉 ∈ 𝒫 𝑆)
153152adantr 481 . . 3 ((𝜑𝐸𝐷) → 𝑉 ∈ 𝒫 𝑆)
154 ifnefalse 4471 . . . . 5 (𝐸𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
155154adantl 482 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
15613adantr 481 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
157155, 156eqbrtrrd 5098 . . 3 ((𝜑𝐸𝐷) → (𝐹𝐸) ≤ (♯‘𝑉))
15853adantr 481 . . 3 ((𝜑𝐸𝐷) → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
159 fveq2 6774 . . . . . 6 (𝑧 = 𝑉 → (♯‘𝑧) = (♯‘𝑉))
160159breq2d 5086 . . . . 5 (𝑧 = 𝑉 → ((𝐹𝐸) ≤ (♯‘𝑧) ↔ (𝐹𝐸) ≤ (♯‘𝑉)))
161 oveq1 7282 . . . . . 6 (𝑧 = 𝑉 → (𝑧𝐶𝑀) = (𝑉𝐶𝑀))
162161sseq1d 3952 . . . . 5 (𝑧 = 𝑉 → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
163160, 162anbi12d 631 . . . 4 (𝑧 = 𝑉 → (((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
164163rspcev 3561 . . 3 ((𝑉 ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
165153, 157, 158, 164syl12anc 834 . 2 ((𝜑𝐸𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
166151, 165pm2.61dane 3032 1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  wss 3887  ifcif 4459  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  Fincfn 8733  cc 10869  cr 10870  1c1 10872   + caddc 10874  cle 11010  cmin 11205  cn 11973  0cn0 12233  chash 14044   Ramsey cram 16700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  ramub1lem2  16728
  Copyright terms: Public domain W3C validator