MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem1 Structured version   Visualization version   GIF version

Theorem ramub1lem1 16997
Description: Lemma for ramub1 16999. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (♯‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
ramub1.d (𝜑𝐷𝑅)
ramub1.w (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
ramub1.7 (𝜑 → (𝐺𝐷) ≤ (♯‘𝑊))
ramub1.8 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
ramub1.e (𝜑𝐸𝑅)
ramub1.v (𝜑𝑉𝑊)
ramub1.9 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
ramub1.s (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
Assertion
Ref Expression
ramub1lem1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Distinct variable groups:   𝑥,𝑢,𝐷   𝑦,𝑢,𝑧,𝐹,𝑥   𝑎,𝑏,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑢,𝑅,𝑥,𝑦,𝑧   𝑊,𝑎,𝑖,𝑢   𝜑,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑉,𝑎,𝑖,𝑥,𝑧   𝑢,𝐶,𝑥,𝑦,𝑧   𝑢,𝐻,𝑥,𝑦,𝑧   𝑢,𝐾,𝑥,𝑦,𝑧   𝑥,𝐸,𝑧   𝑋,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐸(𝑦,𝑢,𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑉(𝑦,𝑢,𝑏)   𝑊(𝑥,𝑦,𝑧,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem1
StepHypRef Expression
1 ramub1.4 . . . . 5 (𝜑𝑆 ∈ Fin)
2 ramub1.v . . . . . . . 8 (𝜑𝑉𝑊)
3 ramub1.w . . . . . . . 8 (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
42, 3sstrd 3957 . . . . . . 7 (𝜑𝑉 ⊆ (𝑆 ∖ {𝑋}))
54difss2d 4102 . . . . . 6 (𝜑𝑉𝑆)
6 ramub1.x . . . . . . 7 (𝜑𝑋𝑆)
76snssd 4773 . . . . . 6 (𝜑 → {𝑋} ⊆ 𝑆)
85, 7unssd 4155 . . . . 5 (𝜑 → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
91, 8sselpwd 5283 . . . 4 (𝜑 → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
109adantr 480 . . 3 ((𝜑𝐸 = 𝐷) → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
11 iftrue 4494 . . . . . . 7 (𝐸 = 𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
1211adantl 481 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
13 ramub1.9 . . . . . . 7 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
1413adantr 480 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
1512, 14eqbrtrrd 5131 . . . . 5 ((𝜑𝐸 = 𝐷) → ((𝐹𝐷) − 1) ≤ (♯‘𝑉))
16 ramub1.f . . . . . . . . 9 (𝜑𝐹:𝑅⟶ℕ)
17 ramub1.d . . . . . . . . 9 (𝜑𝐷𝑅)
1816, 17ffvelcdmd 7057 . . . . . . . 8 (𝜑 → (𝐹𝐷) ∈ ℕ)
1918adantr 480 . . . . . . 7 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℕ)
2019nnred 12201 . . . . . 6 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℝ)
21 1red 11175 . . . . . 6 ((𝜑𝐸 = 𝐷) → 1 ∈ ℝ)
221, 5ssfid 9212 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
23 hashcl 14321 . . . . . . . 8 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
24 nn0re 12451 . . . . . . . 8 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
2522, 23, 243syl 18 . . . . . . 7 (𝜑 → (♯‘𝑉) ∈ ℝ)
2625adantr 480 . . . . . 6 ((𝜑𝐸 = 𝐷) → (♯‘𝑉) ∈ ℝ)
2720, 21, 26lesubaddd 11775 . . . . 5 ((𝜑𝐸 = 𝐷) → (((𝐹𝐷) − 1) ≤ (♯‘𝑉) ↔ (𝐹𝐷) ≤ ((♯‘𝑉) + 1)))
2815, 27mpbid 232 . . . 4 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ≤ ((♯‘𝑉) + 1))
29 fveq2 6858 . . . . 5 (𝐸 = 𝐷 → (𝐹𝐸) = (𝐹𝐷))
30 snidg 4624 . . . . . . . 8 (𝑋𝑆𝑋 ∈ {𝑋})
316, 30syl 17 . . . . . . 7 (𝜑𝑋 ∈ {𝑋})
324sseld 3945 . . . . . . . 8 (𝜑 → (𝑋𝑉𝑋 ∈ (𝑆 ∖ {𝑋})))
33 eldifn 4095 . . . . . . . 8 (𝑋 ∈ (𝑆 ∖ {𝑋}) → ¬ 𝑋 ∈ {𝑋})
3432, 33syl6 35 . . . . . . 7 (𝜑 → (𝑋𝑉 → ¬ 𝑋 ∈ {𝑋}))
3531, 34mt2d 136 . . . . . 6 (𝜑 → ¬ 𝑋𝑉)
36 hashunsng 14357 . . . . . . 7 (𝑋𝑆 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1)))
376, 36syl 17 . . . . . 6 (𝜑 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1)))
3822, 35, 37mp2and 699 . . . . 5 (𝜑 → (♯‘(𝑉 ∪ {𝑋})) = ((♯‘𝑉) + 1))
3929, 38breqan12rd 5124 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ↔ (𝐹𝐷) ≤ ((♯‘𝑉) + 1)))
4028, 39mpbird 257 . . 3 ((𝜑𝐸 = 𝐷) → (𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})))
41 snfi 9014 . . . . . . 7 {𝑋} ∈ Fin
42 unfi 9135 . . . . . . 7 ((𝑉 ∈ Fin ∧ {𝑋} ∈ Fin) → (𝑉 ∪ {𝑋}) ∈ Fin)
4322, 41, 42sylancl 586 . . . . . 6 (𝜑 → (𝑉 ∪ {𝑋}) ∈ Fin)
44 ramub1.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
4544nnnn0d 12503 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
46 ramub1.3 . . . . . . 7 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
4746hashbcval 16973 . . . . . 6 (((𝑉 ∪ {𝑋}) ∈ Fin ∧ 𝑀 ∈ ℕ0) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
4843, 45, 47syl2anc 584 . . . . 5 (𝜑 → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
4948adantr 480 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀})
50 simpl1l 1225 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
5146hashbcval 16973 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
5222, 45, 51syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
53 ramub1.s . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
5452, 53eqsstrrd 3982 . . . . . . . 8 (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
5550, 54syl 17 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
56 simpr 484 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑉)
57 simpl3 1194 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀)
58 rabid 3427 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑉 ∧ (♯‘𝑥) = 𝑀))
5956, 57, 58sylanbrc 583 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 𝑀})
6055, 59sseldd 3947 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
61 simpl2 1193 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}))
6261elpwid 4572 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ (𝑉 ∪ {𝑋}))
63 simpl1l 1225 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
6463, 8syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
6562, 64sstrd 3957 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥𝑆)
66 vex 3451 . . . . . . . . . . 11 𝑥 ∈ V
6766elpw 4567 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
6865, 67sylibr 234 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑆)
69 simpl3 1194 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = 𝑀)
70 rabid 3427 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑆 ∧ (♯‘𝑥) = 𝑀))
7168, 69, 70sylanbrc 583 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7246hashbcval 16973 . . . . . . . . . 10 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
731, 45, 72syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7463, 73syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (♯‘𝑥) = 𝑀})
7571, 74eleqtrrd 2831 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝑆𝐶𝑀))
763difss2d 4102 . . . . . . . . . . . . . . 15 (𝜑𝑊𝑆)
771, 76ssfid 9212 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ Fin)
78 nnm1nn0 12483 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
7944, 78syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ∈ ℕ0)
8046hashbcval 16973 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
8177, 79, 80syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
82 ramub1.8 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
8381, 82eqsstrrd 3982 . . . . . . . . . . . 12 (𝜑 → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
8463, 83syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
85 fveqeq2 6867 . . . . . . . . . . . 12 (𝑢 = (𝑥 ∖ {𝑋}) → ((♯‘𝑢) = (𝑀 − 1) ↔ (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)))
86 uncom 4121 . . . . . . . . . . . . . . . 16 (𝑉 ∪ {𝑋}) = ({𝑋} ∪ 𝑉)
8762, 86sseqtrdi 3987 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ ({𝑋} ∪ 𝑉))
88 ssundif 4451 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ({𝑋} ∪ 𝑉) ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑉)
8987, 88sylib 218 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑉)
9063, 2syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑉𝑊)
9189, 90sstrd 3957 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑊)
9266difexi 5285 . . . . . . . . . . . . . 14 (𝑥 ∖ {𝑋}) ∈ V
9392elpw 4567 . . . . . . . . . . . . 13 ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑊)
9491, 93sylibr 234 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊)
9563, 1syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑆 ∈ Fin)
9695, 65ssfid 9212 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ Fin)
97 diffi 9139 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin → (𝑥 ∖ {𝑋}) ∈ Fin)
9896, 97syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ Fin)
99 hashcl 14321 . . . . . . . . . . . . . . 15 ((𝑥 ∖ {𝑋}) ∈ Fin → (♯‘(𝑥 ∖ {𝑋})) ∈ ℕ0)
100 nn0cn 12452 . . . . . . . . . . . . . . 15 ((♯‘(𝑥 ∖ {𝑋})) ∈ ℕ0 → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ)
10198, 99, 1003syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) ∈ ℂ)
102 ax-1cn 11126 . . . . . . . . . . . . . 14 1 ∈ ℂ
103 pncan 11427 . . . . . . . . . . . . . 14 (((♯‘(𝑥 ∖ {𝑋})) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋})))
104101, 102, 103sylancl 586 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (♯‘(𝑥 ∖ {𝑋})))
105 neldifsnd 4757 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑋 ∈ (𝑥 ∖ {𝑋}))
106 hashunsng 14357 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1)))
10763, 6, 1063syl 18 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1)))
10898, 105, 107mp2and 699 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((♯‘(𝑥 ∖ {𝑋})) + 1))
109 undif1 4439 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∖ {𝑋}) ∪ {𝑋}) = (𝑥 ∪ {𝑋})
110 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑥 ∈ 𝒫 𝑉)
11161, 110eldifd 3925 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉))
112 elpwunsn 4648 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉) → 𝑋𝑥)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑋𝑥)
114113snssd 4773 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑋} ⊆ 𝑥)
115 ssequn2 4152 . . . . . . . . . . . . . . . . . . 19 ({𝑋} ⊆ 𝑥 ↔ (𝑥 ∪ {𝑋}) = 𝑥)
116114, 115sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∪ {𝑋}) = 𝑥)
117109, 116eqtr2id 2777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
118117fveq2d 6862 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘𝑥) = (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
119118, 69eqtr3d 2766 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝑀)
120108, 119eqtr3d 2766 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ((♯‘(𝑥 ∖ {𝑋})) + 1) = 𝑀)
121120oveq1d 7402 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((♯‘(𝑥 ∖ {𝑋})) + 1) − 1) = (𝑀 − 1))
122104, 121eqtr3d 2766 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (♯‘(𝑥 ∖ {𝑋})) = (𝑀 − 1))
12385, 94, 122elrabd 3661 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (♯‘𝑢) = (𝑀 − 1)})
12484, 123sseldd 3947 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ (𝐻 “ {𝐷}))
125 ramub1.h . . . . . . . . . . . 12 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
126125mptiniseg 6212 . . . . . . . . . . 11 (𝐷𝑅 → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
12763, 17, 1263syl 18 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
128124, 127eleqtrd 2830 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
129 uneq1 4124 . . . . . . . . . . . 12 (𝑢 = (𝑥 ∖ {𝑋}) → (𝑢 ∪ {𝑋}) = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
130129fveqeq2d 6866 . . . . . . . . . . 11 (𝑢 = (𝑥 ∖ {𝑋}) → ((𝐾‘(𝑢 ∪ {𝑋})) = 𝐷 ↔ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
131130elrab 3659 . . . . . . . . . 10 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} ↔ ((𝑥 ∖ {𝑋}) ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∧ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
132131simprbi 496 . . . . . . . . 9 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
133128, 132syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
134117fveq2d 6862 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
135 simpl1r 1226 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝐸 = 𝐷)
136133, 134, 1353eqtr4d 2774 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = 𝐸)
137 ramub1.6 . . . . . . . . 9 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
138137ffnd 6689 . . . . . . . 8 (𝜑𝐾 Fn (𝑆𝐶𝑀))
139 fniniseg 7032 . . . . . . . 8 (𝐾 Fn (𝑆𝐶𝑀) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
14063, 138, 1393syl 18 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
14175, 136, 140mpbir2and 713 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
14260, 141pm2.61dan 812 . . . . 5 (((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (♯‘𝑥) = 𝑀) → 𝑥 ∈ (𝐾 “ {𝐸}))
143142rabssdv 4038 . . . 4 ((𝜑𝐸 = 𝐷) → {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (♯‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
14449, 143eqsstrd 3981 . . 3 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
145 fveq2 6858 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (♯‘𝑧) = (♯‘(𝑉 ∪ {𝑋})))
146145breq2d 5119 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝐹𝐸) ≤ (♯‘𝑧) ↔ (𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋}))))
147 oveq1 7394 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (𝑧𝐶𝑀) = ((𝑉 ∪ {𝑋})𝐶𝑀))
148147sseq1d 3978 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
149146, 148anbi12d 632 . . . 4 (𝑧 = (𝑉 ∪ {𝑋}) → (((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
150149rspcev 3588 . . 3 (((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (♯‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
15110, 40, 144, 150syl12anc 836 . 2 ((𝜑𝐸 = 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
1521, 5sselpwd 5283 . . . 4 (𝜑𝑉 ∈ 𝒫 𝑆)
153152adantr 480 . . 3 ((𝜑𝐸𝐷) → 𝑉 ∈ 𝒫 𝑆)
154 ifnefalse 4500 . . . . 5 (𝐸𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
155154adantl 481 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
15613adantr 480 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (♯‘𝑉))
157155, 156eqbrtrrd 5131 . . 3 ((𝜑𝐸𝐷) → (𝐹𝐸) ≤ (♯‘𝑉))
15853adantr 480 . . 3 ((𝜑𝐸𝐷) → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
159 fveq2 6858 . . . . . 6 (𝑧 = 𝑉 → (♯‘𝑧) = (♯‘𝑉))
160159breq2d 5119 . . . . 5 (𝑧 = 𝑉 → ((𝐹𝐸) ≤ (♯‘𝑧) ↔ (𝐹𝐸) ≤ (♯‘𝑉)))
161 oveq1 7394 . . . . . 6 (𝑧 = 𝑉 → (𝑧𝐶𝑀) = (𝑉𝐶𝑀))
162161sseq1d 3978 . . . . 5 (𝑧 = 𝑉 → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
163160, 162anbi12d 632 . . . 4 (𝑧 = 𝑉 → (((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
164163rspcev 3588 . . 3 ((𝑉 ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (♯‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
165153, 157, 158, 164syl12anc 836 . 2 ((𝜑𝐸𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
166151, 165pm2.61dane 3012 1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (♯‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  wss 3914  ifcif 4488  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cmpt 5188  ccnv 5637  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  cc 11066  cr 11067  1c1 11069   + caddc 11071  cle 11209  cmin 11405  cn 12186  0cn0 12442  chash 14295   Ramsey cram 16970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  ramub1lem2  16998
  Copyright terms: Public domain W3C validator