MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem3 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem3 26753
Description: Lemma 3 for gausslemma2d 26759. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem3 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem3
StepHypRef Expression
1 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2 oveq1 7369 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
32breq1d 5120 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
42oveq2d 7378 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
53, 2, 4ifbieq12d 4519 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
65adantl 482 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
7 gausslemma2d.p . . . . . . . 8 (𝜑𝑃 ∈ (ℙ ∖ {2}))
87gausslemma2dlem0a 26741 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
9 elfz2 13441 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)))
10 gausslemma2d.m . . . . . . . . . . . . . . . . 17 𝑀 = (⌊‘(𝑃 / 4))
1110oveq1i 7372 . . . . . . . . . . . . . . . 16 (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1)
1211breq1i 5117 . . . . . . . . . . . . . . 15 ((𝑀 + 1) ≤ 𝑘 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘)
13 nnre 12169 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
14 4re 12246 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 4 ∈ ℝ)
16 4ne0 12270 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ≠ 0
1716a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 4 ≠ 0)
1813, 15, 17redivcld 11992 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
1918adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 4) ∈ ℝ)
20 fllelt 13712 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 / 4) ∈ ℝ → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
2119, 20syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
2218flcld 13713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2322zred 12616 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℝ)
24 peano2re 11337 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⌊‘(𝑃 / 4)) ∈ ℝ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℕ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
2625adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
27 zre 12512 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
2827adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ℝ)
29 ltleletr 11257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 / 4) ∈ ℝ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3019, 26, 28, 29syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3130expd 416 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3231adantld 491 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3321, 32mpd 15 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘))
3433imp 407 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘)
3513rehalfcld 12409 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 2) ∈ ℝ)
3635adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 2) ∈ ℝ)
37 2re 12236 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 2 ∈ ℝ)
3927, 38remulcld 11194 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (𝑘 · 2) ∈ ℝ)
4039adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
41 2pos 12265 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
4237, 41pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
4342a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
44 lediv1 12029 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
4536, 40, 43, 44syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
46 nncn 12170 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
47 2cnne0 12372 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ ∧ 2 ≠ 0)
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
49 divdiv1 11875 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
5046, 48, 48, 49syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
51 2t2e4 12326 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 2) = 4
5251oveq2i 7373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 / (2 · 2)) = (𝑃 / 4)
5350, 52eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / 4))
54 zcn 12513 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
55 2cnd 12240 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ∈ ℂ)
56 2ne0 12266 . . . . . . . . . . . . . . . . . . . . . . 23 2 ≠ 0
5756a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ≠ 0)
5854, 55, 57divcan4d 11946 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((𝑘 · 2) / 2) = 𝑘)
5953, 58breqan12rd 5127 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2) ↔ (𝑃 / 4) ≤ 𝑘))
6045, 59bitrd 278 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6160adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6234, 61mpbird 256 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 2) ≤ (𝑘 · 2))
6362exp31 420 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑃 ∈ ℕ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 2) ≤ (𝑘 · 2))))
6463com23 86 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6512, 64biimtrid 241 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
66653ad2ant3 1135 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6766com12 32 . . . . . . . . . . . 12 ((𝑀 + 1) ≤ 𝑘 → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6867adantr 481 . . . . . . . . . . 11 (((𝑀 + 1) ≤ 𝑘𝑘𝐻) → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6968impcom 408 . . . . . . . . . 10 ((((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
709, 69sylbi 216 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
7170impcom 408 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 / 2) ≤ (𝑘 · 2))
72 elfzelz 13451 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
7372zred 12616 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℝ)
7437a1i 11 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℝ)
7573, 74remulcld 11194 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ)
76 lenlt 11242 . . . . . . . . 9 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
7735, 75, 76syl2an 596 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
7871, 77mpbid 231 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
798, 78sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
8079adantr 481 . . . . 5 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → ¬ (𝑘 · 2) < (𝑃 / 2))
8180iffalsed 4502 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑃 − (𝑘 · 2)))
826, 81eqtrd 2771 . . 3 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑃 − (𝑘 · 2)))
837, 10gausslemma2dlem0d 26744 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
84 nn0p1nn 12461 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
85 nnuz 12815 . . . . . . 7 ℕ = (ℤ‘1)
8684, 85eleqtrdi 2842 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ (ℤ‘1))
8783, 86syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
88 fzss1 13490 . . . . 5 ((𝑀 + 1) ∈ (ℤ‘1) → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
8987, 88syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
9089sselda 3947 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ (1...𝐻))
91 ovexd 7397 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ V)
921, 82, 90, 91fvmptd2 6961 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
9392ralrimiva 3139 1 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  Vcvv 3446  cdif 3910  wss 3913  ifcif 4491  {csn 4591   class class class wbr 5110  cmpt 5193  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065   < clt 11198  cle 11199  cmin 11394   / cdiv 11821  cn 12162  2c2 12217  4c4 12219  0cn0 12422  cz 12508  cuz 12772  ...cfz 13434  cfl 13705  cprime 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fl 13707  df-seq 13917  df-exp 13978  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-dvds 16148  df-prm 16559
This theorem is referenced by:  gausslemma2dlem5a  26755  gausslemma2dlem6  26757
  Copyright terms: Public domain W3C validator