MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem3 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem3 27286
Description: Lemma 3 for gausslemma2d 27292. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem3 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem3
StepHypRef Expression
1 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2 oveq1 7397 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
32breq1d 5120 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
42oveq2d 7406 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
53, 2, 4ifbieq12d 4520 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
65adantl 481 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
7 gausslemma2d.p . . . . . . . 8 (𝜑𝑃 ∈ (ℙ ∖ {2}))
87gausslemma2dlem0a 27274 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
9 elfz2 13482 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)))
10 gausslemma2d.m . . . . . . . . . . . . . . . . 17 𝑀 = (⌊‘(𝑃 / 4))
1110oveq1i 7400 . . . . . . . . . . . . . . . 16 (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1)
1211breq1i 5117 . . . . . . . . . . . . . . 15 ((𝑀 + 1) ≤ 𝑘 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘)
13 nnre 12200 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
14 4re 12277 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 4 ∈ ℝ)
16 4ne0 12301 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ≠ 0
1716a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 4 ≠ 0)
1813, 15, 17redivcld 12017 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
1918adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 4) ∈ ℝ)
20 fllelt 13766 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 / 4) ∈ ℝ → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
2119, 20syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
2218flcld 13767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2322zred 12645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℝ)
24 peano2re 11354 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⌊‘(𝑃 / 4)) ∈ ℝ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℕ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
2625adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
27 zre 12540 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ℝ)
29 ltleletr 11274 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 / 4) ∈ ℝ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3019, 26, 28, 29syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3130expd 415 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3231adantld 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3321, 32mpd 15 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘))
3433imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘)
3513rehalfcld 12436 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 2) ∈ ℝ)
3635adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 2) ∈ ℝ)
37 2re 12267 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 2 ∈ ℝ)
3927, 38remulcld 11211 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (𝑘 · 2) ∈ ℝ)
4039adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
41 2pos 12296 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
4237, 41pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
4342a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
44 lediv1 12055 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
4536, 40, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
46 nncn 12201 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
47 2cnne0 12398 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ ∧ 2 ≠ 0)
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
49 divdiv1 11900 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
5046, 48, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
51 2t2e4 12352 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 2) = 4
5251oveq2i 7401 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 / (2 · 2)) = (𝑃 / 4)
5350, 52eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / 4))
54 zcn 12541 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
55 2cnd 12271 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ∈ ℂ)
56 2ne0 12297 . . . . . . . . . . . . . . . . . . . . . . 23 2 ≠ 0
5756a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ≠ 0)
5854, 55, 57divcan4d 11971 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((𝑘 · 2) / 2) = 𝑘)
5953, 58breqan12rd 5127 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2) ↔ (𝑃 / 4) ≤ 𝑘))
6045, 59bitrd 279 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6160adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6234, 61mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 2) ≤ (𝑘 · 2))
6362exp31 419 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑃 ∈ ℕ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 2) ≤ (𝑘 · 2))))
6463com23 86 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6512, 64biimtrid 242 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
66653ad2ant3 1135 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6766com12 32 . . . . . . . . . . . 12 ((𝑀 + 1) ≤ 𝑘 → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6867adantr 480 . . . . . . . . . . 11 (((𝑀 + 1) ≤ 𝑘𝑘𝐻) → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6968impcom 407 . . . . . . . . . 10 ((((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
709, 69sylbi 217 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
7170impcom 407 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 / 2) ≤ (𝑘 · 2))
72 elfzelz 13492 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
7372zred 12645 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℝ)
7437a1i 11 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℝ)
7573, 74remulcld 11211 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ)
76 lenlt 11259 . . . . . . . . 9 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
7735, 75, 76syl2an 596 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
7871, 77mpbid 232 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
798, 78sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
8079adantr 480 . . . . 5 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → ¬ (𝑘 · 2) < (𝑃 / 2))
8180iffalsed 4502 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑃 − (𝑘 · 2)))
826, 81eqtrd 2765 . . 3 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑃 − (𝑘 · 2)))
837, 10gausslemma2dlem0d 27277 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
84 nn0p1nn 12488 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
85 nnuz 12843 . . . . . . 7 ℕ = (ℤ‘1)
8684, 85eleqtrdi 2839 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ (ℤ‘1))
8783, 86syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
88 fzss1 13531 . . . . 5 ((𝑀 + 1) ∈ (ℤ‘1) → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
8987, 88syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
9089sselda 3949 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ (1...𝐻))
91 ovexd 7425 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ V)
921, 82, 90, 91fvmptd2 6979 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
9392ralrimiva 3126 1 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  4c4 12250  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  cfl 13759  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649
This theorem is referenced by:  gausslemma2dlem5a  27288  gausslemma2dlem6  27290
  Copyright terms: Public domain W3C validator