MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem3 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem3 25956
Description: Lemma 3 for gausslemma2d 25962. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem3 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem3
StepHypRef Expression
1 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
2 oveq1 7146 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
32breq1d 5043 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
42oveq2d 7155 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
53, 2, 4ifbieq12d 4455 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
65adantl 485 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
7 gausslemma2d.p . . . . . . . 8 (𝜑𝑃 ∈ (ℙ ∖ {2}))
87gausslemma2dlem0a 25944 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
9 elfz2 12896 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)))
10 gausslemma2d.m . . . . . . . . . . . . . . . . 17 𝑀 = (⌊‘(𝑃 / 4))
1110oveq1i 7149 . . . . . . . . . . . . . . . 16 (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1)
1211breq1i 5040 . . . . . . . . . . . . . . 15 ((𝑀 + 1) ≤ 𝑘 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘)
13 nnre 11636 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
14 4re 11713 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 4 ∈ ℝ)
16 4ne0 11737 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ≠ 0
1716a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 4 ≠ 0)
1813, 15, 17redivcld 11461 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
1918adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 4) ∈ ℝ)
20 fllelt 13166 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 / 4) ∈ ℝ → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
2119, 20syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
2218flcld 13167 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2322zred 12079 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℝ)
24 peano2re 10806 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⌊‘(𝑃 / 4)) ∈ ℝ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℕ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
2625adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
27 zre 11977 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
2827adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ℝ)
29 ltleletr 10726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 / 4) ∈ ℝ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3019, 26, 28, 29syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3130expd 419 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3231adantld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3321, 32mpd 15 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘))
3433imp 410 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘)
3513rehalfcld 11876 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 2) ∈ ℝ)
3635adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 2) ∈ ℝ)
37 2re 11703 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 2 ∈ ℝ)
3927, 38remulcld 10664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (𝑘 · 2) ∈ ℝ)
4039adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
41 2pos 11732 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
4237, 41pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
4342a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
44 lediv1 11498 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
4536, 40, 43, 44syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
46 nncn 11637 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
47 2cnne0 11839 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ ∧ 2 ≠ 0)
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
49 divdiv1 11344 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
5046, 48, 48, 49syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
51 2t2e4 11793 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 2) = 4
5251oveq2i 7150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 / (2 · 2)) = (𝑃 / 4)
5350, 52eqtrdi 2852 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / 4))
54 zcn 11978 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
55 2cnd 11707 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ∈ ℂ)
56 2ne0 11733 . . . . . . . . . . . . . . . . . . . . . . 23 2 ≠ 0
5756a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ≠ 0)
5854, 55, 57divcan4d 11415 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((𝑘 · 2) / 2) = 𝑘)
5953, 58breqan12rd 5050 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2) ↔ (𝑃 / 4) ≤ 𝑘))
6045, 59bitrd 282 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6160adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6234, 61mpbird 260 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 2) ≤ (𝑘 · 2))
6362exp31 423 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑃 ∈ ℕ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 2) ≤ (𝑘 · 2))))
6463com23 86 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6512, 64syl5bi 245 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
66653ad2ant3 1132 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6766com12 32 . . . . . . . . . . . 12 ((𝑀 + 1) ≤ 𝑘 → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6867adantr 484 . . . . . . . . . . 11 (((𝑀 + 1) ≤ 𝑘𝑘𝐻) → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6968impcom 411 . . . . . . . . . 10 ((((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
709, 69sylbi 220 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
7170impcom 411 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 / 2) ≤ (𝑘 · 2))
72 elfzelz 12906 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
7372zred 12079 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℝ)
7437a1i 11 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℝ)
7573, 74remulcld 10664 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ)
76 lenlt 10712 . . . . . . . . 9 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
7735, 75, 76syl2an 598 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
7871, 77mpbid 235 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
798, 78sylan 583 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
8079adantr 484 . . . . 5 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → ¬ (𝑘 · 2) < (𝑃 / 2))
8180iffalsed 4439 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑃 − (𝑘 · 2)))
826, 81eqtrd 2836 . . 3 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑃 − (𝑘 · 2)))
837, 10gausslemma2dlem0d 25947 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
84 nn0p1nn 11928 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
85 nnuz 12273 . . . . . . 7 ℕ = (ℤ‘1)
8684, 85eleqtrdi 2903 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ (ℤ‘1))
8783, 86syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
88 fzss1 12945 . . . . 5 ((𝑀 + 1) ∈ (ℤ‘1) → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
8987, 88syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
9089sselda 3918 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ (1...𝐻))
91 ovexd 7174 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ V)
921, 82, 90, 91fvmptd2 6757 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
9392ralrimiva 3152 1 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  Vcvv 3444  cdif 3881  wss 3884  ifcif 4428  {csn 4528   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  cn 11629  2c2 11684  4c4 11686  0cn0 11889  cz 11973  cuz 12235  ...cfz 12889  cfl 13159  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fl 13161  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604  df-prm 16010
This theorem is referenced by:  gausslemma2dlem5a  25958  gausslemma2dlem6  25960
  Copyright terms: Public domain W3C validator