Step | Hyp | Ref
| Expression |
1 | | areacirc.1 |
. . . 4
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} |
2 | 1 | imaeq1i 5955 |
. . 3
⊢ (𝑆 “ {𝑡}) = ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) |
3 | | vex 3426 |
. . . 4
⊢ 𝑡 ∈ V |
4 | | imasng 5980 |
. . . 4
⊢ (𝑡 ∈ V → ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) = {𝑢 ∣ 𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢}) |
5 | 3, 4 | ax-mp 5 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) = {𝑢 ∣ 𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢} |
6 | | df-br 5071 |
. . . . 5
⊢ (𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢 ↔ 〈𝑡, 𝑢〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}) |
7 | | vex 3426 |
. . . . . 6
⊢ 𝑢 ∈ V |
8 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑥 = 𝑡 → (𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ)) |
9 | 8 | anbi1d 629 |
. . . . . . 7
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ))) |
10 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → (𝑥↑2) = (𝑡↑2)) |
11 | 10 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑥 = 𝑡 → ((𝑥↑2) + (𝑦↑2)) = ((𝑡↑2) + (𝑦↑2))) |
12 | 11 | breq1d 5080 |
. . . . . . 7
⊢ (𝑥 = 𝑡 → (((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2) ↔ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2))) |
13 | 9, 12 | anbi12d 630 |
. . . . . 6
⊢ (𝑥 = 𝑡 → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2)) ↔ ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2)))) |
14 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 ∈ ℝ ↔ 𝑢 ∈ ℝ)) |
15 | 14 | anbi2d 628 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ))) |
16 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑦↑2) = (𝑢↑2)) |
17 | 16 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝑡↑2) + (𝑦↑2)) = ((𝑡↑2) + (𝑢↑2))) |
18 | 17 | breq1d 5080 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2) ↔ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))) |
19 | 15, 18 | anbi12d 630 |
. . . . . 6
⊢ (𝑦 = 𝑢 → (((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2)) ↔ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))) |
20 | 3, 7, 13, 19 | opelopab 5448 |
. . . . 5
⊢
(〈𝑡, 𝑢〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ↔ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))) |
21 | | anass 468 |
. . . . 5
⊢ (((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))) |
22 | 6, 20, 21 | 3bitri 296 |
. . . 4
⊢ (𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢 ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))) |
23 | 22 | abbii 2809 |
. . 3
⊢ {𝑢 ∣ 𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢} = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))} |
24 | 2, 5, 23 | 3eqtri 2770 |
. 2
⊢ (𝑆 “ {𝑡}) = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))} |
25 | | simp3 1136 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
26 | 25 | biantrurd 532 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))))) |
27 | 26 | abbidv 2808 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))}) |
28 | | resqcl 13772 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℝ) |
29 | 28 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ) |
30 | | resqcl 13772 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℝ) |
31 | 30 | 3ad2ant3 1133 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ) |
32 | 29, 31 | resubcld 11333 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
33 | 32 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
34 | | absresq 14942 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ →
((abs‘𝑡)↑2) =
(𝑡↑2)) |
35 | 34 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2)) |
36 | 35 | breq1d 5080 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
37 | | recn 10892 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℝ → 𝑡 ∈
ℂ) |
38 | 37 | abscld 15076 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ →
(abs‘𝑡) ∈
ℝ) |
39 | 38 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (abs‘𝑡) ∈
ℝ) |
40 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑅 ∈ ℝ) |
41 | 37 | absge0d 15084 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ → 0 ≤
(abs‘𝑡)) |
42 | 41 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘𝑡)) |
43 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤ 𝑅) |
44 | 39, 40, 42, 43 | le2sqd 13902 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2))) |
45 | 29, 31 | subge0d 11495 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
46 | 36, 44, 45 | 3bitr4d 310 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
47 | 46 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
48 | 33, 47 | resqrtcld 15057 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
49 | 48 | renegcld 11332 |
. . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
50 | 49 | rexrd 10956 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ*) |
51 | 48 | rexrd 10956 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ*) |
52 | | iccval 13047 |
. . . . . 6
⊢
((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ* ∧
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ*) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = {𝑢 ∈ ℝ*
∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))}) |
53 | 50, 51, 52 | syl2anc 583 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = {𝑢 ∈ ℝ*
∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))}) |
54 | | iftrue 4462 |
. . . . . 6
⊢
((abs‘𝑡) ≤
𝑅 →
if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) |
55 | 54 | adantl 481 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) |
56 | | absresq 14942 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ℝ →
((abs‘𝑢)↑2) =
(𝑢↑2)) |
57 | 32 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) |
58 | 57 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) |
59 | 58 | sqsqrtd 15079 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2)))↑2) = ((𝑅↑2) − (𝑡↑2))) |
60 | 56, 59 | breqan12rd 5087 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((abs‘𝑢)↑2) ≤
((√‘((𝑅↑2)
− (𝑡↑2)))↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2)))) |
61 | | recn 10892 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ℝ → 𝑢 ∈
ℂ) |
62 | 61 | abscld 15076 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ℝ →
(abs‘𝑢) ∈
ℝ) |
63 | 62 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (abs‘𝑢) ∈
ℝ) |
64 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) →
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ) |
65 | 61 | absge0d 15084 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ℝ → 0 ≤
(abs‘𝑢)) |
66 | 65 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 0 ≤
(abs‘𝑢)) |
67 | 33, 47 | sqrtge0d 15060 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
68 | 67 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 0 ≤
(√‘((𝑅↑2)
− (𝑡↑2)))) |
69 | 63, 64, 66, 68 | le2sqd 13902 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))) ↔
((abs‘𝑢)↑2) ≤
((√‘((𝑅↑2)
− (𝑡↑2)))↑2))) |
70 | 31 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ∈ ℝ) |
71 | | resqcl 13772 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ℝ → (𝑢↑2) ∈
ℝ) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℝ) |
73 | 29 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) ∈ ℝ) |
74 | 70, 72, 73 | leaddsub2d 11507 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2)))) |
75 | 74 | adantlr 711 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2)))) |
76 | 60, 69, 75 | 3bitr4rd 311 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
77 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ) |
78 | 77, 64 | absled 15070 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))) ↔
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) |
79 | | rexr 10952 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ℝ → 𝑢 ∈
ℝ*) |
80 | 79 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ*) |
81 | 80 | biantrurd 532 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) →
((-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) ↔ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))) |
82 | 76, 78, 81 | 3bitrd 304 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))) |
83 | 82 | pm5.32da 578 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑢 ∈ ℝ ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))) |
84 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ∈ ℝ*) |
85 | 48 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → (√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) |
86 | | mnfxr 10963 |
. . . . . . . . . . . . 13
⊢ -∞
∈ ℝ* |
87 | 86 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ ∈
ℝ*) |
88 | 49 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) |
89 | 88 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ*) |
90 | 49 | mnfltd 12789 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -∞ <
-(√‘((𝑅↑2)
− (𝑡↑2)))) |
91 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ <
-(√‘((𝑅↑2)
− (𝑡↑2)))) |
92 | | simprrl 777 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢) |
93 | 87, 89, 84, 91, 92 | xrltletrd 12824 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ < 𝑢) |
94 | | simprrr 778 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
95 | | xrre 12832 |
. . . . . . . . . . 11
⊢ (((𝑢 ∈ ℝ*
∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) ∧ (-∞
< 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) → 𝑢 ∈
ℝ) |
96 | 84, 85, 93, 94, 95 | syl22anc 835 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ∈ ℝ) |
97 | 96 | ex 412 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) → 𝑢 ∈ ℝ)) |
98 | 97 | pm4.71rd 562 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) ↔ (𝑢 ∈ ℝ ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))) |
99 | 83, 98 | bitr4d 281 |
. . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))) |
100 | 99 | abbidv 2808 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∣ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))}) |
101 | | df-rab 3072 |
. . . . . 6
⊢ {𝑢 ∈ ℝ*
∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))} = {𝑢 ∣ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))} |
102 | 100, 101 | eqtr4di 2797 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∈ ℝ* ∣
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))}) |
103 | 53, 55, 102 | 3eqtr4rd 2789 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
104 | 40, 39 | ltnled 11052 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅)) |
105 | 104 | biimprd 247 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬
(abs‘𝑡) ≤ 𝑅 → 𝑅 < (abs‘𝑡))) |
106 | 105 | imdistani 568 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡))) |
107 | | df-rab 3072 |
. . . . . . 7
⊢ {𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} |
108 | 29 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) ∈ ℝ) |
109 | 31 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ∈ ℝ) |
110 | 71 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℝ) |
111 | 109, 110 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ((𝑡↑2) + (𝑢↑2)) ∈ ℝ) |
112 | 40, 39, 43, 42 | lt2sqd 13901 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ (𝑅↑2) < ((abs‘𝑡)↑2))) |
113 | 35 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) < ((abs‘𝑡)↑2) ↔ (𝑅↑2) < (𝑡↑2))) |
114 | 112, 113 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ (𝑅↑2) < (𝑡↑2))) |
115 | 114 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → (𝑅↑2) < (𝑡↑2)) |
116 | 115 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) < (𝑡↑2)) |
117 | | sqge0 13783 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ℝ → 0 ≤
(𝑢↑2)) |
118 | 117 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → 0 ≤ (𝑢↑2)) |
119 | 109, 110 | addge01d 11493 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (0 ≤ (𝑢↑2) ↔ (𝑡↑2) ≤ ((𝑡↑2) + (𝑢↑2)))) |
120 | 118, 119 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ≤ ((𝑡↑2) + (𝑢↑2))) |
121 | 108, 109,
111, 116, 120 | ltletrd 11065 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) < ((𝑡↑2) + (𝑢↑2))) |
122 | 108, 111 | ltnled 11052 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ((𝑅↑2) < ((𝑡↑2) + (𝑢↑2)) ↔ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))) |
123 | 121, 122 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) |
124 | 123 | 3expa 1116 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) ∧ 𝑢 ∈ ℝ) → ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) |
125 | 124 | ralrimiva 3107 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → ∀𝑢 ∈ ℝ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) |
126 | | rabeq0 4315 |
. . . . . . . 8
⊢ ({𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = ∅ ↔ ∀𝑢 ∈ ℝ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) |
127 | 125, 126 | sylibr 233 |
. . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → {𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = ∅) |
128 | 107, 127 | eqtr3id 2793 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = ∅) |
129 | 106, 128 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = ∅) |
130 | | iffalse 4465 |
. . . . . 6
⊢ (¬
(abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
∅) |
131 | 130 | adantl 481 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
∅) |
132 | 129, 131 | eqtr4d 2781 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
133 | 103, 132 | pm2.61dan 809 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
134 | 27, 133 | eqtr3d 2780 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
135 | 24, 134 | syl5eq 2791 |
1
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |