| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | areacirc.1 | . . . 4
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} | 
| 2 | 1 | imaeq1i 6075 | . . 3
⊢ (𝑆 “ {𝑡}) = ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) | 
| 3 |  | vex 3484 | . . . 4
⊢ 𝑡 ∈ V | 
| 4 |  | imasng 6102 | . . . 4
⊢ (𝑡 ∈ V → ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) = {𝑢 ∣ 𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢}) | 
| 5 | 3, 4 | ax-mp 5 | . . 3
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) = {𝑢 ∣ 𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢} | 
| 6 |  | df-br 5144 | . . . . 5
⊢ (𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢 ↔ 〈𝑡, 𝑢〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}) | 
| 7 |  | vex 3484 | . . . . . 6
⊢ 𝑢 ∈ V | 
| 8 |  | eleq1w 2824 | . . . . . . . 8
⊢ (𝑥 = 𝑡 → (𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ)) | 
| 9 | 8 | anbi1d 631 | . . . . . . 7
⊢ (𝑥 = 𝑡 → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ))) | 
| 10 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑥 = 𝑡 → (𝑥↑2) = (𝑡↑2)) | 
| 11 | 10 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑥 = 𝑡 → ((𝑥↑2) + (𝑦↑2)) = ((𝑡↑2) + (𝑦↑2))) | 
| 12 | 11 | breq1d 5153 | . . . . . . 7
⊢ (𝑥 = 𝑡 → (((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2) ↔ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2))) | 
| 13 | 9, 12 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = 𝑡 → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2)) ↔ ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2)))) | 
| 14 |  | eleq1w 2824 | . . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 ∈ ℝ ↔ 𝑢 ∈ ℝ)) | 
| 15 | 14 | anbi2d 630 | . . . . . . 7
⊢ (𝑦 = 𝑢 → ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ))) | 
| 16 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑦↑2) = (𝑢↑2)) | 
| 17 | 16 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝑡↑2) + (𝑦↑2)) = ((𝑡↑2) + (𝑢↑2))) | 
| 18 | 17 | breq1d 5153 | . . . . . . 7
⊢ (𝑦 = 𝑢 → (((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2) ↔ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))) | 
| 19 | 15, 18 | anbi12d 632 | . . . . . 6
⊢ (𝑦 = 𝑢 → (((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2)) ↔ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))) | 
| 20 | 3, 7, 13, 19 | opelopab 5547 | . . . . 5
⊢
(〈𝑡, 𝑢〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ↔ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))) | 
| 21 |  | anass 468 | . . . . 5
⊢ (((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))) | 
| 22 | 6, 20, 21 | 3bitri 297 | . . . 4
⊢ (𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢 ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))) | 
| 23 | 22 | abbii 2809 | . . 3
⊢ {𝑢 ∣ 𝑡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢} = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))} | 
| 24 | 2, 5, 23 | 3eqtri 2769 | . 2
⊢ (𝑆 “ {𝑡}) = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))} | 
| 25 |  | simp3 1139 | . . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) | 
| 26 | 25 | biantrurd 532 | . . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))))) | 
| 27 | 26 | abbidv 2808 | . . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))}) | 
| 28 |  | resqcl 14164 | . . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℝ) | 
| 29 | 28 | 3ad2ant1 1134 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ) | 
| 30 |  | resqcl 14164 | . . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℝ) | 
| 31 | 30 | 3ad2ant3 1136 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ) | 
| 32 | 29, 31 | resubcld 11691 | . . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) | 
| 33 | 32 | adantr 480 | . . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) | 
| 34 |  | absresq 15341 | . . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ →
((abs‘𝑡)↑2) =
(𝑡↑2)) | 
| 35 | 34 | 3ad2ant3 1136 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2)) | 
| 36 | 35 | breq1d 5153 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2))) | 
| 37 |  | recn 11245 | . . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℝ → 𝑡 ∈
ℂ) | 
| 38 | 37 | abscld 15475 | . . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ →
(abs‘𝑡) ∈
ℝ) | 
| 39 | 38 | 3ad2ant3 1136 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (abs‘𝑡) ∈
ℝ) | 
| 40 |  | simp1 1137 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑅 ∈ ℝ) | 
| 41 | 37 | absge0d 15483 | . . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ → 0 ≤
(abs‘𝑡)) | 
| 42 | 41 | 3ad2ant3 1136 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘𝑡)) | 
| 43 |  | simp2 1138 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤ 𝑅) | 
| 44 | 39, 40, 42, 43 | le2sqd 14296 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2))) | 
| 45 | 29, 31 | subge0d 11853 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2))) | 
| 46 | 36, 44, 45 | 3bitr4d 311 | . . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2)))) | 
| 47 | 46 | biimpa 476 | . . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) | 
| 48 | 33, 47 | resqrtcld 15456 | . . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) | 
| 49 | 48 | renegcld 11690 | . . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) | 
| 50 | 49 | rexrd 11311 | . . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ*) | 
| 51 | 48 | rexrd 11311 | . . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ*) | 
| 52 |  | iccval 13426 | . . . . . 6
⊢
((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ* ∧
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ*) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = {𝑢 ∈ ℝ*
∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))}) | 
| 53 | 50, 51, 52 | syl2anc 584 | . . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = {𝑢 ∈ ℝ*
∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))}) | 
| 54 |  | iftrue 4531 | . . . . . 6
⊢
((abs‘𝑡) ≤
𝑅 →
if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) | 
| 55 | 54 | adantl 481 | . . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) | 
| 56 |  | absresq 15341 | . . . . . . . . . . . 12
⊢ (𝑢 ∈ ℝ →
((abs‘𝑢)↑2) =
(𝑢↑2)) | 
| 57 | 32 | recnd 11289 | . . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) | 
| 58 | 57 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) | 
| 59 | 58 | sqsqrtd 15478 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2)))↑2) = ((𝑅↑2) − (𝑡↑2))) | 
| 60 | 56, 59 | breqan12rd 5160 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((abs‘𝑢)↑2) ≤
((√‘((𝑅↑2)
− (𝑡↑2)))↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2)))) | 
| 61 |  | recn 11245 | . . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ℝ → 𝑢 ∈
ℂ) | 
| 62 | 61 | abscld 15475 | . . . . . . . . . . . . 13
⊢ (𝑢 ∈ ℝ →
(abs‘𝑢) ∈
ℝ) | 
| 63 | 62 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (abs‘𝑢) ∈
ℝ) | 
| 64 | 48 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) →
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ) | 
| 65 | 61 | absge0d 15483 | . . . . . . . . . . . . 13
⊢ (𝑢 ∈ ℝ → 0 ≤
(abs‘𝑢)) | 
| 66 | 65 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 0 ≤
(abs‘𝑢)) | 
| 67 | 33, 47 | sqrtge0d 15459 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) | 
| 68 | 67 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 0 ≤
(√‘((𝑅↑2)
− (𝑡↑2)))) | 
| 69 | 63, 64, 66, 68 | le2sqd 14296 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))) ↔
((abs‘𝑢)↑2) ≤
((√‘((𝑅↑2)
− (𝑡↑2)))↑2))) | 
| 70 | 31 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ∈ ℝ) | 
| 71 |  | resqcl 14164 | . . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ℝ → (𝑢↑2) ∈
ℝ) | 
| 72 | 71 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℝ) | 
| 73 | 29 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) ∈ ℝ) | 
| 74 | 70, 72, 73 | leaddsub2d 11865 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2)))) | 
| 75 | 74 | adantlr 715 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2)))) | 
| 76 | 60, 69, 75 | 3bitr4rd 312 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) | 
| 77 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ) | 
| 78 | 77, 64 | absled 15469 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))) ↔
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) | 
| 79 |  | rexr 11307 | . . . . . . . . . . . 12
⊢ (𝑢 ∈ ℝ → 𝑢 ∈
ℝ*) | 
| 80 | 79 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ*) | 
| 81 | 80 | biantrurd 532 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) →
((-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) ↔ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))) | 
| 82 | 76, 78, 81 | 3bitrd 305 | . . . . . . . . 9
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))) | 
| 83 | 82 | pm5.32da 579 | . . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑢 ∈ ℝ ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))) | 
| 84 |  | simprl 771 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ∈ ℝ*) | 
| 85 | 48 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → (√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) | 
| 86 |  | mnfxr 11318 | . . . . . . . . . . . . 13
⊢ -∞
∈ ℝ* | 
| 87 | 86 | a1i 11 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ ∈
ℝ*) | 
| 88 | 49 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) | 
| 89 | 88 | rexrd 11311 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ*) | 
| 90 | 49 | mnfltd 13166 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -∞ <
-(√‘((𝑅↑2)
− (𝑡↑2)))) | 
| 91 | 90 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ <
-(√‘((𝑅↑2)
− (𝑡↑2)))) | 
| 92 |  | simprrl 781 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢) | 
| 93 | 87, 89, 84, 91, 92 | xrltletrd 13203 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ < 𝑢) | 
| 94 |  | simprrr 782 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) | 
| 95 |  | xrre 13211 | . . . . . . . . . . 11
⊢ (((𝑢 ∈ ℝ*
∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) ∧ (-∞
< 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) → 𝑢 ∈
ℝ) | 
| 96 | 84, 85, 93, 94, 95 | syl22anc 839 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ∈ ℝ) | 
| 97 | 96 | ex 412 | . . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) → 𝑢 ∈ ℝ)) | 
| 98 | 97 | pm4.71rd 562 | . . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) ↔ (𝑢 ∈ ℝ ∧ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))) | 
| 99 | 83, 98 | bitr4d 282 | . . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))) | 
| 100 | 99 | abbidv 2808 | . . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∣ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))}) | 
| 101 |  | df-rab 3437 | . . . . . 6
⊢ {𝑢 ∈ ℝ*
∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))} = {𝑢 ∣ (𝑢 ∈ ℝ* ∧
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))} | 
| 102 | 100, 101 | eqtr4di 2795 | . . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∈ ℝ* ∣
(-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢 ∧ 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))}) | 
| 103 | 53, 55, 102 | 3eqtr4rd 2788 | . . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) | 
| 104 | 40, 39 | ltnled 11408 | . . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅)) | 
| 105 | 104 | biimprd 248 | . . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬
(abs‘𝑡) ≤ 𝑅 → 𝑅 < (abs‘𝑡))) | 
| 106 | 105 | imdistani 568 | . . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡))) | 
| 107 |  | df-rab 3437 | . . . . . . 7
⊢ {𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} | 
| 108 | 29 | 3ad2ant1 1134 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) ∈ ℝ) | 
| 109 | 31 | 3ad2ant1 1134 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ∈ ℝ) | 
| 110 | 71 | 3ad2ant3 1136 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℝ) | 
| 111 | 109, 110 | readdcld 11290 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ((𝑡↑2) + (𝑢↑2)) ∈ ℝ) | 
| 112 | 40, 39, 43, 42 | lt2sqd 14295 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ (𝑅↑2) < ((abs‘𝑡)↑2))) | 
| 113 | 35 | breq2d 5155 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) < ((abs‘𝑡)↑2) ↔ (𝑅↑2) < (𝑡↑2))) | 
| 114 | 112, 113 | bitrd 279 | . . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ (𝑅↑2) < (𝑡↑2))) | 
| 115 | 114 | biimpa 476 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → (𝑅↑2) < (𝑡↑2)) | 
| 116 | 115 | 3adant3 1133 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) < (𝑡↑2)) | 
| 117 |  | sqge0 14176 | . . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ℝ → 0 ≤
(𝑢↑2)) | 
| 118 | 117 | 3ad2ant3 1136 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → 0 ≤ (𝑢↑2)) | 
| 119 | 109, 110 | addge01d 11851 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (0 ≤ (𝑢↑2) ↔ (𝑡↑2) ≤ ((𝑡↑2) + (𝑢↑2)))) | 
| 120 | 118, 119 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ≤ ((𝑡↑2) + (𝑢↑2))) | 
| 121 | 108, 109,
111, 116, 120 | ltletrd 11421 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) < ((𝑡↑2) + (𝑢↑2))) | 
| 122 | 108, 111 | ltnled 11408 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ((𝑅↑2) < ((𝑡↑2) + (𝑢↑2)) ↔ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))) | 
| 123 | 121, 122 | mpbid 232 | . . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) | 
| 124 | 123 | 3expa 1119 | . . . . . . . . 9
⊢ ((((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) ∧ 𝑢 ∈ ℝ) → ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) | 
| 125 | 124 | ralrimiva 3146 | . . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → ∀𝑢 ∈ ℝ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) | 
| 126 |  | rabeq0 4388 | . . . . . . . 8
⊢ ({𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = ∅ ↔ ∀𝑢 ∈ ℝ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) | 
| 127 | 125, 126 | sylibr 234 | . . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → {𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = ∅) | 
| 128 | 107, 127 | eqtr3id 2791 | . . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = ∅) | 
| 129 | 106, 128 | syl 17 | . . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = ∅) | 
| 130 |  | iffalse 4534 | . . . . . 6
⊢ (¬
(abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
∅) | 
| 131 | 130 | adantl 481 | . . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
∅) | 
| 132 | 129, 131 | eqtr4d 2780 | . . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) | 
| 133 | 103, 132 | pm2.61dan 813 | . . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) | 
| 134 | 27, 133 | eqtr3d 2779 | . 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) | 
| 135 | 24, 134 | eqtrid 2789 | 1
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |