MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivthlem1 Structured version   Visualization version   GIF version

Theorem dvivthlem1 24177
Description: Lemma for dvivth 24179. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvivth.5 (𝜑𝑀 < 𝑁)
dvivth.6 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
dvivth.7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
Assertion
Ref Expression
dvivthlem1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺   𝑥,𝑀,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐺(𝑦)

Proof of Theorem dvivthlem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 12530 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2 dvivth.1 . . . . 5 (𝜑𝑀 ∈ (𝐴(,)𝐵))
31, 2sseldi 3825 . . . 4 (𝜑𝑀 ∈ ℝ)
4 dvivth.2 . . . . 5 (𝜑𝑁 ∈ (𝐴(,)𝐵))
51, 4sseldi 3825 . . . 4 (𝜑𝑁 ∈ ℝ)
6 dvivth.5 . . . . 5 (𝜑𝑀 < 𝑁)
73, 5, 6ltled 10511 . . . 4 (𝜑𝑀𝑁)
8 dvivth.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
9 cncff 23073 . . . . . . . . . 10 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
1110ffvelrnda 6613 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
12 dvfre 24120 . . . . . . . . . . . . . 14 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1310, 1, 12sylancl 580 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
14 dvivth.4 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
154, 14eleqtrrd 2909 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
1613, 15ffvelrnd 6614 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
172, 14eleqtrrd 2909 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ dom (ℝ D 𝐹))
1813, 17ffvelrnd 6614 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
19 iccssre 12550 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
2016, 18, 19syl2anc 579 . . . . . . . . . . 11 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
21 dvivth.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
2220, 21sseldd 3828 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2322adantr 474 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
241a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2524sselda 3827 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
2623, 25remulcld 10394 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℝ)
2711, 26resubcld 10789 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐹𝑦) − (𝐶 · 𝑦)) ∈ ℝ)
28 dvivth.7 . . . . . . 7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
2927, 28fmptd 6638 . . . . . 6 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
30 iccssioo2 12541 . . . . . . 7 ((𝑀 ∈ (𝐴(,)𝐵) ∧ 𝑁 ∈ (𝐴(,)𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
312, 4, 30syl2anc 579 . . . . . 6 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
3229, 31fssresd 6312 . . . . 5 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ)
33 ax-resscn 10316 . . . . . 6 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
35 fss 6295 . . . . . . . . 9 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3629, 33, 35sylancl 580 . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3728oveq2i 6921 . . . . . . . . . . 11 (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦))))
38 reelprrecn 10351 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
4011recnd 10392 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
4114feq2d 6268 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4213, 41mpbid 224 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4342ffvelrnda 6613 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
4410feqmptd 6500 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
4544oveq2d 6926 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
4642feqmptd 6500 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4745, 46eqtr3d 2863 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4826recnd 10392 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℂ)
49 remulcl 10344 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5022, 49sylan 575 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5150recnd 10392 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℂ)
5222adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ)
5334sselda 3827 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
54 1cnd 10358 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
5539dvmptid 24126 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
5622recnd 10392 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
5739, 53, 54, 55, 56dvmptcmul 24133 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ (𝐶 · 1)))
5856mulid1d 10381 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 · 1) = 𝐶)
5958mpteq2dv 4970 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐶 · 1)) = (𝑦 ∈ ℝ ↦ 𝐶))
6057, 59eqtrd 2861 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ 𝐶))
61 eqid 2825 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261tgioo2 22983 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
63 iooretop 22946 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
6539, 51, 52, 60, 24, 62, 61, 64dvmptres 24132 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐶 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝐶))
6639, 40, 43, 47, 48, 23, 65dvmptsub 24136 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6737, 66syl5eq 2873 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6867dmeqd 5562 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐺) = dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
69 dmmptg 5877 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴(,)𝐵)(((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V → dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵))
70 ovex 6942 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V
7170a1i 11 . . . . . . . . . 10 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V)
7269, 71mprg 3135 . . . . . . . . 9 dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵)
7368, 72syl6eq 2877 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
74 dvcn 24090 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
7534, 36, 24, 73, 74syl31anc 1496 . . . . . . 7 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
76 rescncf 23077 . . . . . . 7 ((𝑀[,]𝑁) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)))
7731, 75, 76sylc 65 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
78 cncffvrn 23078 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)) → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
7933, 77, 78sylancr 581 . . . . 5 (𝜑 → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
8032, 79mpbird 249 . . . 4 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
813, 5, 7, 80evthicc 23632 . . 3 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ∧ ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧)))
8281simpld 490 . 2 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥))
83 fvres 6456 . . . . . . . 8 (𝑧 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) = (𝐺𝑧))
84 fvres 6456 . . . . . . . 8 (𝑥 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) = (𝐺𝑥))
8583, 84breqan12rd 4892 . . . . . . 7 ((𝑥 ∈ (𝑀[,]𝑁) ∧ 𝑧 ∈ (𝑀[,]𝑁)) → (((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ (𝐺𝑧) ≤ (𝐺𝑥)))
8685ralbidva 3194 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
8786adantl 475 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
88 ioossicc 12554 . . . . . 6 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
89 ssralv 3891 . . . . . 6 ((𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9088, 89ax-mp 5 . . . . 5 (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
9187, 90syl6bi 245 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9231sselda 3827 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴(,)𝐵))
9342ffvelrnda 6613 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9492, 93syldan 585 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9594recnd 10392 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9695adantr 474 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9756ad2antrr 717 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℂ)
9867fveq1d 6439 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
9998adantr 474 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
100 fveq2 6437 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
101100oveq1d 6925 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D 𝐹)‘𝑦) − 𝐶) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
102 eqid 2825 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))
103 ovex 6942 . . . . . . . . . . . 12 (((ℝ D 𝐹)‘𝑥) − 𝐶) ∈ V
104101, 102, 103fvmpt 6533 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10592, 104syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10699, 105eqtrd 2861 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
107106adantr 474 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10829ad2antrr 717 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1091a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
110 simprl 787 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝑁))
11188, 31syl5ss 3838 . . . . . . . . . 10 (𝜑 → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
112111ad2antrr 717 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
11392adantr 474 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
11473ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
115113, 114eleqtrrd 2909 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
116 simprr 789 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
117 fveq2 6437 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
118117breq1d 4885 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐺𝑧) ≤ (𝐺𝑥) ↔ (𝐺𝑤) ≤ (𝐺𝑥)))
119118cbvralv 3383 . . . . . . . . . 10 (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
120116, 119sylib 210 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
121108, 109, 110, 112, 115, 120dvferm 24157 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = 0)
122107, 121eqtr3d 2863 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) = 0)
12396, 97, 122subeq0d 10728 . . . . . 6 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
124123exp32 413 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
125 vex 3417 . . . . . . 7 𝑥 ∈ V
126125elpr 4422 . . . . . 6 (𝑥 ∈ {𝑀, 𝑁} ↔ (𝑥 = 𝑀𝑥 = 𝑁))
127106adantr 474 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
12829ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1291a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
130 simprl 787 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑀)
131 eliooord 12528 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑀𝑀 < 𝐵))
1322, 131syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑀𝑀 < 𝐵))
133132simpld 490 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝑀)
134 ne0i 4152 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
135 ndmioo 12497 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
136135necon1ai 3026 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1372, 134, 1363syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
138137simpld 490 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1395rexrd 10413 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ*)
140 elioo2 12511 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
141138, 139, 140syl2anc 579 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
1423, 133, 6, 141mpbir3and 1446 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (𝐴(,)𝑁))
143142ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑀 ∈ (𝐴(,)𝑁))
144130, 143eqeltrd 2906 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝑁))
145137simprd 491 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
146 eliooord 12528 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑁𝑁 < 𝐵))
1474, 146syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑁𝑁 < 𝐵))
148147simprd 491 . . . . . . . . . . . . . . 15 (𝜑𝑁 < 𝐵)
149139, 145, 148xrltled 12276 . . . . . . . . . . . . . 14 (𝜑𝑁𝐵)
150 iooss2 12506 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑁𝐵) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
151145, 149, 150syl2anc 579 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
152151ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
15392adantr 474 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
15473ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
155153, 154eleqtrrd 2909 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
156 simprr 789 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
157156, 119sylib 210 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
158130oveq1d 6925 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑥(,)𝑁) = (𝑀(,)𝑁))
159158raleqdv 3356 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥)))
160157, 159mpbird 249 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
161128, 129, 144, 152, 155, 160dvferm1 24154 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) ≤ 0)
162127, 161eqbrtrrd 4899 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0)
16394adantr 474 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
16422ad2antrr 717 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
165163, 164suble0d 10950 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0 ↔ ((ℝ D 𝐹)‘𝑥) ≤ 𝐶))
166162, 165mpbid 224 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
167 elicc2 12533 . . . . . . . . . . . . . 14 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
16816, 18, 167syl2anc 579 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
16921, 168mpbid 224 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀)))
170169simp3d 1178 . . . . . . . . . . 11 (𝜑𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
171170ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
172130fveq2d 6441 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑀))
173171, 172breqtrrd 4903 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
174163, 164letri3d 10505 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
175166, 173, 174mpbir2and 704 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
176175exp32 413 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑀 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
177 simprl 787 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑁)
178177fveq2d 6441 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑁))
179169simp2d 1177 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
180179ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
181178, 180eqbrtrd 4897 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
18229ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1831a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
1843rexrd 10413 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ*)
185 elioo2 12511 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
186184, 145, 185syl2anc 579 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
1875, 6, 148, 186mpbir3and 1446 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (𝑀(,)𝐵))
188187ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑁 ∈ (𝑀(,)𝐵))
189177, 188eqeltrd 2906 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝐵))
190138, 184, 133xrltled 12276 . . . . . . . . . . . . . 14 (𝜑𝐴𝑀)
191 iooss1 12505 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑀) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
192138, 190, 191syl2anc 579 . . . . . . . . . . . . 13 (𝜑 → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
193192ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
19492adantr 474 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
19573ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
196194, 195eleqtrrd 2909 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
197 simprr 789 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
198197, 119sylib 210 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
199177oveq2d 6926 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑥) = (𝑀(,)𝑁))
200199raleqdv 3356 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥)))
201198, 200mpbird 249 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥))
202182, 183, 189, 193, 196, 201dvferm2 24156 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ ((ℝ D 𝐺)‘𝑥))
203106adantr 474 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
204202, 203breqtrd 4901 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶))
20594adantr 474 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
20622ad2antrr 717 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
207205, 206subge0d 10949 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶) ↔ 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)))
208204, 207mpbid 224 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
209205, 206letri3d 10505 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
210181, 208, 209mpbir2and 704 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
211210exp32 413 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑁 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
212176, 211jaod 890 . . . . . 6 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑥 = 𝑀𝑥 = 𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
213126, 212syl5bi 234 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ {𝑀, 𝑁} → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
214 elun 3982 . . . . . . 7 (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
215 prunioo 12601 . . . . . . . . 9 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*𝑀𝑁) → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
216184, 139, 7, 215syl3anc 1494 . . . . . . . 8 (𝜑 → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
217216eleq2d 2892 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
218214, 217syl5bbr 277 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
219218biimpar 471 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
220124, 213, 219mpjaod 891 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
22191, 220syld 47 . . 3 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
222221reximdva 3225 . 2 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶))
22382, 222mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 878  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  Vcvv 3414  cun 3796  wss 3798  c0 4146  {cpr 4401   class class class wbr 4875  cmpt 4954  dom cdm 5346  ran crn 5347  cres 5348  wf 6123  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  1c1 10260   · cmul 10264  *cxr 10397   < clt 10398  cle 10399  cmin 10592  (,)cioo 12470  [,]cicc 12473  TopOpenctopn 16442  topGenctg 16458  fldccnfld 20113  cnccncf 23056   D cdv 24033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-lp 21318  df-perf 21319  df-cn 21409  df-cnp 21410  df-haus 21497  df-cmp 21568  df-tx 21743  df-hmeo 21936  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-xms 22502  df-ms 22503  df-tms 22504  df-cncf 23058  df-limc 24036  df-dv 24037
This theorem is referenced by:  dvivthlem2  24178
  Copyright terms: Public domain W3C validator