Step | Hyp | Ref
| Expression |
1 | | ioossre 13444 |
. . . . 5
⊢ (𝐴(,)𝐵) ⊆ ℝ |
2 | | dvivth.1 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝐴(,)𝐵)) |
3 | 1, 2 | sselid 3992 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℝ) |
4 | | dvivth.2 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (𝐴(,)𝐵)) |
5 | 1, 4 | sselid 3992 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℝ) |
6 | | dvivth.5 |
. . . . 5
⊢ (𝜑 → 𝑀 < 𝑁) |
7 | 3, 5, 6 | ltled 11406 |
. . . 4
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
8 | | dvivth.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
9 | | cncff 24932 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
11 | 10 | ffvelcdmda 7103 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑦) ∈ ℝ) |
12 | | dvfre 26003 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
13 | 10, 1, 12 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
14 | | dvivth.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
15 | 4, 14 | eleqtrrd 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ dom (ℝ D 𝐹)) |
16 | 13, 15 | ffvelcdmd 7104 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ) |
17 | 2, 14 | eleqtrrd 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ dom (ℝ D 𝐹)) |
18 | 13, 17 | ffvelcdmd 7104 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ) |
19 | | iccssre 13465 |
. . . . . . . . . . . 12
⊢
((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ) |
20 | 16, 18, 19 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ) |
21 | | dvivth.6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀))) |
22 | 20, 21 | sseldd 3995 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℝ) |
23 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ) |
24 | 1 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
25 | 24 | sselda 3994 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ) |
26 | 23, 25 | remulcld 11288 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℝ) |
27 | 11, 26 | resubcld 11688 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝐹‘𝑦) − (𝐶 · 𝑦)) ∈ ℝ) |
28 | | dvivth.7 |
. . . . . . 7
⊢ 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑦) − (𝐶 · 𝑦))) |
29 | 27, 28 | fmptd 7133 |
. . . . . 6
⊢ (𝜑 → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
30 | | iccssioo2 13456 |
. . . . . . 7
⊢ ((𝑀 ∈ (𝐴(,)𝐵) ∧ 𝑁 ∈ (𝐴(,)𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵)) |
31 | 2, 4, 30 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵)) |
32 | 29, 31 | fssresd 6775 |
. . . . 5
⊢ (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ) |
33 | | ax-resscn 11209 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
34 | 33 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℂ) |
35 | | fss 6752 |
. . . . . . . . 9
⊢ ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
36 | 29, 33, 35 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
37 | 28 | oveq2i 7441 |
. . . . . . . . . . 11
⊢ (ℝ
D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑦) − (𝐶 · 𝑦)))) |
38 | | reelprrecn 11244 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ {ℝ, ℂ} |
39 | 38 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
40 | 11 | recnd 11286 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑦) ∈ ℂ) |
41 | 14 | feq2d 6722 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℝ)) |
42 | 13, 41 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ) |
43 | 42 | ffvelcdmda 7103 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ) |
44 | 10 | feqmptd 6976 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑦))) |
45 | 44 | oveq2d 7446 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑦)))) |
46 | 42 | feqmptd 6976 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦))) |
47 | 45, 46 | eqtr3d 2776 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦))) |
48 | 26 | recnd 11286 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℂ) |
49 | | remulcl 11237 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ) |
50 | 22, 49 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ) |
51 | 50 | recnd 11286 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℂ) |
52 | 22 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐶 ∈ ℝ) |
53 | 34 | sselda 3994 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
54 | | 1cnd 11253 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 1 ∈
ℂ) |
55 | 39 | dvmptid 26009 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1)) |
56 | 22 | recnd 11286 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ∈ ℂ) |
57 | 39, 53, 54, 55, 56 | dvmptcmul 26016 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ (𝐶 · 1))) |
58 | 56 | mulridd 11275 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶 · 1) = 𝐶) |
59 | 58 | mpteq2dv 5249 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝐶 · 1)) = (𝑦 ∈ ℝ ↦ 𝐶)) |
60 | 57, 59 | eqtrd 2774 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ 𝐶)) |
61 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
62 | 61 | tgioo2 24838 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
63 | | iooretop 24801 |
. . . . . . . . . . . . . 14
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
64 | 63 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) |
65 | 39, 51, 52, 60, 24, 62, 61, 64 | dvmptres 26015 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐶 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝐶)) |
66 | 39, 40, 43, 47, 48, 23, 65 | dvmptsub 26019 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑦) − (𝐶 · 𝑦)))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))) |
67 | 37, 66 | eqtrid 2786 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))) |
68 | 67 | dmeqd 5918 |
. . . . . . . . 9
⊢ (𝜑 → dom (ℝ D 𝐺) = dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))) |
69 | | dmmptg 6263 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
(𝐴(,)𝐵)(((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V → dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵)) |
70 | | ovex 7463 |
. . . . . . . . . . 11
⊢
(((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V |
71 | 70 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V) |
72 | 69, 71 | mprg 3064 |
. . . . . . . . 9
⊢ dom
(𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵) |
73 | 68, 72 | eqtrdi 2790 |
. . . . . . . 8
⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
74 | | dvcn 25971 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D
𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
75 | 34, 36, 24, 73, 74 | syl31anc 1372 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
76 | | rescncf 24936 |
. . . . . . 7
⊢ ((𝑀[,]𝑁) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ))) |
77 | 31, 75, 76 | sylc 65 |
. . . . . 6
⊢ (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)) |
78 | | cncfcdm 24937 |
. . . . . 6
⊢ ((ℝ
⊆ ℂ ∧ (𝐺
↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)) → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ)) |
79 | 33, 77, 78 | sylancr 587 |
. . . . 5
⊢ (𝜑 → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ)) |
80 | 32, 79 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
81 | 3, 5, 7, 80 | evthicc 25507 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ∧ ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧))) |
82 | 81 | simpld 494 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥)) |
83 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) = (𝐺‘𝑧)) |
84 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) = (𝐺‘𝑥)) |
85 | 83, 84 | breqan12rd 5164 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝑀[,]𝑁) ∧ 𝑧 ∈ (𝑀[,]𝑁)) → (((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ (𝐺‘𝑧) ≤ (𝐺‘𝑥))) |
86 | 85 | ralbidva 3173 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) |
87 | 86 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) |
88 | | ioossicc 13469 |
. . . . . 6
⊢ (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) |
89 | | ssralv 4063 |
. . . . . 6
⊢ ((𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) |
90 | 88, 89 | ax-mp 5 |
. . . . 5
⊢
(∀𝑧 ∈
(𝑀[,]𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥)) |
91 | 87, 90 | biimtrdi 253 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) |
92 | 31 | sselda 3994 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴(,)𝐵)) |
93 | 42 | ffvelcdmda 7103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
94 | 92, 93 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
95 | 94 | recnd 11286 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
96 | 95 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
97 | 56 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐶 ∈ ℂ) |
98 | 67 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥)) |
99 | 98 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥)) |
100 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥)) |
101 | 100 | oveq1d 7445 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℝ D 𝐹)‘𝑦) − 𝐶) = (((ℝ D 𝐹)‘𝑥) − 𝐶)) |
102 | | eqid 2734 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) |
103 | | ovex 7463 |
. . . . . . . . . . . 12
⊢
(((ℝ D 𝐹)‘𝑥) − 𝐶) ∈ V |
104 | 101, 102,
103 | fvmpt 7015 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶)) |
105 | 92, 104 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶)) |
106 | 99, 105 | eqtrd 2774 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶)) |
107 | 106 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶)) |
108 | 29 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
109 | 1 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (𝐴(,)𝐵) ⊆ ℝ) |
110 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ (𝑀(,)𝑁)) |
111 | 88, 31 | sstrid 4006 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵)) |
112 | 111 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵)) |
113 | 92 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ (𝐴(,)𝐵)) |
114 | 73 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
115 | 113, 114 | eleqtrrd 2841 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺)) |
116 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥)) |
117 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (𝐺‘𝑧) = (𝐺‘𝑤)) |
118 | 117 | breq1d 5157 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → ((𝐺‘𝑧) ≤ (𝐺‘𝑥) ↔ (𝐺‘𝑤) ≤ (𝐺‘𝑥))) |
119 | 118 | cbvralvw 3234 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
(𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺‘𝑤) ≤ (𝐺‘𝑥)) |
120 | 116, 119 | sylib 218 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺‘𝑤) ≤ (𝐺‘𝑥)) |
121 | 108, 109,
110, 112, 115, 120 | dvferm 26040 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐺)‘𝑥) = 0) |
122 | 107, 121 | eqtr3d 2776 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) = 0) |
123 | 96, 97, 122 | subeq0d 11625 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶) |
124 | 123 | exp32 420 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))) |
125 | | vex 3481 |
. . . . . . 7
⊢ 𝑥 ∈ V |
126 | 125 | elpr 4654 |
. . . . . 6
⊢ (𝑥 ∈ {𝑀, 𝑁} ↔ (𝑥 = 𝑀 ∨ 𝑥 = 𝑁)) |
127 | 106 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶)) |
128 | 29 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
129 | 1 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (𝐴(,)𝐵) ⊆ ℝ) |
130 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 = 𝑀) |
131 | | eliooord 13442 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑀 ∧ 𝑀 < 𝐵)) |
132 | 2, 131 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 < 𝑀 ∧ 𝑀 < 𝐵)) |
133 | 132 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 < 𝑀) |
134 | | ne0i 4346 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) |
135 | | ndmioo 13410 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) → (𝐴(,)𝐵) = ∅) |
136 | 135 | necon1ai 2965 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
137 | 2, 134, 136 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
138 | 137 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
139 | 5 | rexrd 11308 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
ℝ*) |
140 | | elioo2 13424 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝑁 ∈
ℝ*) → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀 ∧ 𝑀 < 𝑁))) |
141 | 138, 139,
140 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀 ∧ 𝑀 < 𝑁))) |
142 | 3, 133, 6, 141 | mpbir3and 1341 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (𝐴(,)𝑁)) |
143 | 142 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑀 ∈ (𝐴(,)𝑁)) |
144 | 130, 143 | eqeltrd 2838 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ (𝐴(,)𝑁)) |
145 | 137 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
146 | | eliooord 13442 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑁 ∧ 𝑁 < 𝐵)) |
147 | 4, 146 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 < 𝑁 ∧ 𝑁 < 𝐵)) |
148 | 147 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 < 𝐵) |
149 | 139, 145,
148 | xrltled 13188 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ≤ 𝐵) |
150 | | iooss2 13419 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ*
∧ 𝑁 ≤ 𝐵) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵)) |
151 | 145, 149,
150 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵)) |
152 | 151 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵)) |
153 | 92 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ (𝐴(,)𝐵)) |
154 | 73 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
155 | 153, 154 | eleqtrrd 2841 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺)) |
156 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥)) |
157 | 156, 119 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺‘𝑤) ≤ (𝐺‘𝑥)) |
158 | 130 | oveq1d 7445 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (𝑥(,)𝑁) = (𝑀(,)𝑁)) |
159 | 157, 158 | raleqtrrdv 3327 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ∀𝑤 ∈ (𝑥(,)𝑁)(𝐺‘𝑤) ≤ (𝐺‘𝑥)) |
160 | 128, 129,
144, 152, 155, 159 | dvferm1 26037 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐺)‘𝑥) ≤ 0) |
161 | 127, 160 | eqbrtrrd 5171 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0) |
162 | 94 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
163 | 22 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐶 ∈ ℝ) |
164 | 162, 163 | suble0d 11851 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0 ↔ ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)) |
165 | 161, 164 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶) |
166 | | elicc2 13448 |
. . . . . . . . . . . . . 14
⊢
((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶 ∧ 𝐶 ≤ ((ℝ D 𝐹)‘𝑀)))) |
167 | 16, 18, 166 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶 ∧ 𝐶 ≤ ((ℝ D 𝐹)‘𝑀)))) |
168 | 21, 167 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶 ∧ 𝐶 ≤ ((ℝ D 𝐹)‘𝑀))) |
169 | 168 | simp3d 1143 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ≤ ((ℝ D 𝐹)‘𝑀)) |
170 | 169 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑀)) |
171 | 130 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑀)) |
172 | 170, 171 | breqtrrd 5175 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)) |
173 | 162, 163 | letri3d 11400 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶 ∧ 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)))) |
174 | 165, 172,
173 | mpbir2and 713 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶) |
175 | 174 | exp32 420 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑀 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))) |
176 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 = 𝑁) |
177 | 176 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑁)) |
178 | 168 | simp2d 1142 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶) |
179 | 178 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶) |
180 | 177, 179 | eqbrtrd 5169 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶) |
181 | 29 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
182 | 1 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (𝐴(,)𝐵) ⊆ ℝ) |
183 | 3 | rexrd 11308 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈
ℝ*) |
184 | | elioo2 13424 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁 ∧ 𝑁 < 𝐵))) |
185 | 183, 145,
184 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁 ∧ 𝑁 < 𝐵))) |
186 | 5, 6, 148, 185 | mpbir3and 1341 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ (𝑀(,)𝐵)) |
187 | 186 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑁 ∈ (𝑀(,)𝐵)) |
188 | 176, 187 | eqeltrd 2838 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ (𝑀(,)𝐵)) |
189 | 138, 183,
133 | xrltled 13188 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ≤ 𝑀) |
190 | | iooss1 13418 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≤ 𝑀) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵)) |
191 | 138, 189,
190 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵)) |
192 | 191 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵)) |
193 | 92 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ (𝐴(,)𝐵)) |
194 | 73 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
195 | 193, 194 | eleqtrrd 2841 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺)) |
196 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥)) |
197 | 196, 119 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺‘𝑤) ≤ (𝐺‘𝑥)) |
198 | 176 | oveq2d 7446 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (𝑀(,)𝑥) = (𝑀(,)𝑁)) |
199 | 197, 198 | raleqtrrdv 3327 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑥)(𝐺‘𝑤) ≤ (𝐺‘𝑥)) |
200 | 181, 182,
188, 192, 195, 199 | dvferm2 26039 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 0 ≤ ((ℝ D 𝐺)‘𝑥)) |
201 | 106 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶)) |
202 | 200, 201 | breqtrd 5173 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶)) |
203 | 94 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
204 | 22 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐶 ∈ ℝ) |
205 | 203, 204 | subge0d 11850 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶) ↔ 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))) |
206 | 202, 205 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)) |
207 | 203, 204 | letri3d 11400 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶 ∧ 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)))) |
208 | 180, 206,
207 | mpbir2and 713 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶) |
209 | 208 | exp32 420 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑁 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))) |
210 | 175, 209 | jaod 859 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((𝑥 = 𝑀 ∨ 𝑥 = 𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))) |
211 | 126, 210 | biimtrid 242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ {𝑀, 𝑁} → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))) |
212 | | elun 4162 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁})) |
213 | | prunioo 13517 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℝ*
∧ 𝑁 ∈
ℝ* ∧ 𝑀
≤ 𝑁) → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁)) |
214 | 183, 139,
7, 213 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁)) |
215 | 214 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁))) |
216 | 212, 215 | bitr3id 285 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁))) |
217 | 216 | biimpar 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁})) |
218 | 124, 211,
217 | mpjaod 860 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺‘𝑧) ≤ (𝐺‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)) |
219 | 91, 218 | syld 47 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)) |
220 | 219 | reximdva 3165 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)) |
221 | 82, 220 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶) |