MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivthlem1 Structured version   Visualization version   GIF version

Theorem dvivthlem1 25913
Description: Lemma for dvivth 25915. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvivth.5 (𝜑𝑀 < 𝑁)
dvivth.6 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
dvivth.7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
Assertion
Ref Expression
dvivthlem1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺   𝑥,𝑀,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐺(𝑦)

Proof of Theorem dvivthlem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13368 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2 dvivth.1 . . . . 5 (𝜑𝑀 ∈ (𝐴(,)𝐵))
31, 2sselid 3944 . . . 4 (𝜑𝑀 ∈ ℝ)
4 dvivth.2 . . . . 5 (𝜑𝑁 ∈ (𝐴(,)𝐵))
51, 4sselid 3944 . . . 4 (𝜑𝑁 ∈ ℝ)
6 dvivth.5 . . . . 5 (𝜑𝑀 < 𝑁)
73, 5, 6ltled 11322 . . . 4 (𝜑𝑀𝑁)
8 dvivth.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
9 cncff 24786 . . . . . . . . . 10 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
1110ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
12 dvfre 25855 . . . . . . . . . . . . . 14 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1310, 1, 12sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
14 dvivth.4 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
154, 14eleqtrrd 2831 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
1613, 15ffvelcdmd 7057 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
172, 14eleqtrrd 2831 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ dom (ℝ D 𝐹))
1813, 17ffvelcdmd 7057 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
19 iccssre 13390 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
2016, 18, 19syl2anc 584 . . . . . . . . . . 11 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
21 dvivth.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
2220, 21sseldd 3947 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2322adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
241a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2524sselda 3946 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
2623, 25remulcld 11204 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℝ)
2711, 26resubcld 11606 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐹𝑦) − (𝐶 · 𝑦)) ∈ ℝ)
28 dvivth.7 . . . . . . 7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
2927, 28fmptd 7086 . . . . . 6 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
30 iccssioo2 13380 . . . . . . 7 ((𝑀 ∈ (𝐴(,)𝐵) ∧ 𝑁 ∈ (𝐴(,)𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
312, 4, 30syl2anc 584 . . . . . 6 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
3229, 31fssresd 6727 . . . . 5 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ)
33 ax-resscn 11125 . . . . . 6 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
35 fss 6704 . . . . . . . . 9 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3629, 33, 35sylancl 586 . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3728oveq2i 7398 . . . . . . . . . . 11 (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦))))
38 reelprrecn 11160 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
4011recnd 11202 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
4114feq2d 6672 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4213, 41mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4342ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
4410feqmptd 6929 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
4544oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
4642feqmptd 6929 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4745, 46eqtr3d 2766 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4826recnd 11202 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℂ)
49 remulcl 11153 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5022, 49sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5150recnd 11202 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℂ)
5222adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ)
5334sselda 3946 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
54 1cnd 11169 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
5539dvmptid 25861 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
5622recnd 11202 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
5739, 53, 54, 55, 56dvmptcmul 25868 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ (𝐶 · 1)))
5856mulridd 11191 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 · 1) = 𝐶)
5958mpteq2dv 5201 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐶 · 1)) = (𝑦 ∈ ℝ ↦ 𝐶))
6057, 59eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ 𝐶))
61 tgioo4 24693 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
62 eqid 2729 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
63 iooretop 24653 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
6539, 51, 52, 60, 24, 61, 62, 64dvmptres 25867 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐶 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝐶))
6639, 40, 43, 47, 48, 23, 65dvmptsub 25871 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6737, 66eqtrid 2776 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6867dmeqd 5869 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐺) = dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
69 dmmptg 6215 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴(,)𝐵)(((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V → dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵))
70 ovex 7420 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V
7170a1i 11 . . . . . . . . . 10 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V)
7269, 71mprg 3050 . . . . . . . . 9 dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵)
7368, 72eqtrdi 2780 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
74 dvcn 25823 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
7534, 36, 24, 73, 74syl31anc 1375 . . . . . . 7 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
76 rescncf 24790 . . . . . . 7 ((𝑀[,]𝑁) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)))
7731, 75, 76sylc 65 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
78 cncfcdm 24791 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)) → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
7933, 77, 78sylancr 587 . . . . 5 (𝜑 → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
8032, 79mpbird 257 . . . 4 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
813, 5, 7, 80evthicc 25360 . . 3 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ∧ ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧)))
8281simpld 494 . 2 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥))
83 fvres 6877 . . . . . . . 8 (𝑧 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) = (𝐺𝑧))
84 fvres 6877 . . . . . . . 8 (𝑥 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) = (𝐺𝑥))
8583, 84breqan12rd 5124 . . . . . . 7 ((𝑥 ∈ (𝑀[,]𝑁) ∧ 𝑧 ∈ (𝑀[,]𝑁)) → (((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ (𝐺𝑧) ≤ (𝐺𝑥)))
8685ralbidva 3154 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
8786adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
88 ioossicc 13394 . . . . . 6 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
89 ssralv 4015 . . . . . 6 ((𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9088, 89ax-mp 5 . . . . 5 (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
9187, 90biimtrdi 253 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9231sselda 3946 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴(,)𝐵))
9342ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9492, 93syldan 591 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9594recnd 11202 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9695adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9756ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℂ)
9867fveq1d 6860 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
9998adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
100 fveq2 6858 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
101100oveq1d 7402 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D 𝐹)‘𝑦) − 𝐶) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
102 eqid 2729 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))
103 ovex 7420 . . . . . . . . . . . 12 (((ℝ D 𝐹)‘𝑥) − 𝐶) ∈ V
104101, 102, 103fvmpt 6968 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10592, 104syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10699, 105eqtrd 2764 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
107106adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10829ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1091a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
110 simprl 770 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝑁))
11188, 31sstrid 3958 . . . . . . . . . 10 (𝜑 → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
112111ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
11392adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
11473ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
115113, 114eleqtrrd 2831 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
116 simprr 772 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
117 fveq2 6858 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
118117breq1d 5117 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐺𝑧) ≤ (𝐺𝑥) ↔ (𝐺𝑤) ≤ (𝐺𝑥)))
119118cbvralvw 3215 . . . . . . . . . 10 (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
120116, 119sylib 218 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
121108, 109, 110, 112, 115, 120dvferm 25892 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = 0)
122107, 121eqtr3d 2766 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) = 0)
12396, 97, 122subeq0d 11541 . . . . . 6 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
124123exp32 420 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
125 vex 3451 . . . . . . 7 𝑥 ∈ V
126125elpr 4614 . . . . . 6 (𝑥 ∈ {𝑀, 𝑁} ↔ (𝑥 = 𝑀𝑥 = 𝑁))
127106adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
12829ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1291a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
130 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑀)
131 eliooord 13366 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑀𝑀 < 𝐵))
1322, 131syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑀𝑀 < 𝐵))
133132simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝑀)
134 ne0i 4304 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
135 ndmioo 13333 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
136135necon1ai 2952 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1372, 134, 1363syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
138137simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1395rexrd 11224 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ*)
140 elioo2 13347 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
141138, 139, 140syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
1423, 133, 6, 141mpbir3and 1343 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (𝐴(,)𝑁))
143142ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑀 ∈ (𝐴(,)𝑁))
144130, 143eqeltrd 2828 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝑁))
145137simprd 495 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
146 eliooord 13366 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑁𝑁 < 𝐵))
1474, 146syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑁𝑁 < 𝐵))
148147simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝑁 < 𝐵)
149139, 145, 148xrltled 13110 . . . . . . . . . . . . . 14 (𝜑𝑁𝐵)
150 iooss2 13342 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑁𝐵) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
151145, 149, 150syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
152151ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
15392adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
15473ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
155153, 154eleqtrrd 2831 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
156 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
157156, 119sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
158130oveq1d 7402 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑥(,)𝑁) = (𝑀(,)𝑁))
159157, 158raleqtrrdv 3303 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
160128, 129, 144, 152, 155, 159dvferm1 25889 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) ≤ 0)
161127, 160eqbrtrrd 5131 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0)
16294adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
16322ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
164162, 163suble0d 11769 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0 ↔ ((ℝ D 𝐹)‘𝑥) ≤ 𝐶))
165161, 164mpbid 232 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
166 elicc2 13372 . . . . . . . . . . . . . 14 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
16716, 18, 166syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
16821, 167mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀)))
169168simp3d 1144 . . . . . . . . . . 11 (𝜑𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
170169ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
171130fveq2d 6862 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑀))
172170, 171breqtrrd 5135 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
173162, 163letri3d 11316 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
174165, 172, 173mpbir2and 713 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
175174exp32 420 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑀 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
176 simprl 770 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑁)
177176fveq2d 6862 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑁))
178168simp2d 1143 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
179178ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
180177, 179eqbrtrd 5129 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
18129ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1821a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
1833rexrd 11224 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ*)
184 elioo2 13347 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
185183, 145, 184syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
1865, 6, 148, 185mpbir3and 1343 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (𝑀(,)𝐵))
187186ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑁 ∈ (𝑀(,)𝐵))
188176, 187eqeltrd 2828 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝐵))
189138, 183, 133xrltled 13110 . . . . . . . . . . . . . 14 (𝜑𝐴𝑀)
190 iooss1 13341 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑀) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
191138, 189, 190syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
192191ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
19392adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
19473ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
195193, 194eleqtrrd 2831 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
196 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
197196, 119sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
198176oveq2d 7403 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑥) = (𝑀(,)𝑁))
199197, 198raleqtrrdv 3303 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥))
200181, 182, 188, 192, 195, 199dvferm2 25891 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ ((ℝ D 𝐺)‘𝑥))
201106adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
202200, 201breqtrd 5133 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶))
20394adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
20422ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
205203, 204subge0d 11768 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶) ↔ 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)))
206202, 205mpbid 232 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
207203, 204letri3d 11316 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
208180, 206, 207mpbir2and 713 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
209208exp32 420 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑁 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
210175, 209jaod 859 . . . . . 6 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑥 = 𝑀𝑥 = 𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
211126, 210biimtrid 242 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ {𝑀, 𝑁} → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
212 elun 4116 . . . . . . 7 (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
213 prunioo 13442 . . . . . . . . 9 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*𝑀𝑁) → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
214183, 139, 7, 213syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
215214eleq2d 2814 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
216212, 215bitr3id 285 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
217216biimpar 477 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
218124, 211, 217mpjaod 860 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
21991, 218syld 47 . . 3 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
220219reximdva 3146 . 2 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶))
22182, 220mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cun 3912  wss 3914  c0 4296  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405  (,)cioo 13306  [,]cicc 13309  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  cnccncf 24769   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvivthlem2  25914
  Copyright terms: Public domain W3C validator