MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivthlem1 Structured version   Visualization version   GIF version

Theorem dvivthlem1 25985
Description: Lemma for dvivth 25987. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvivth.5 (𝜑𝑀 < 𝑁)
dvivth.6 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
dvivth.7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
Assertion
Ref Expression
dvivthlem1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺   𝑥,𝑀,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐺(𝑦)

Proof of Theorem dvivthlem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 13420 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2 dvivth.1 . . . . 5 (𝜑𝑀 ∈ (𝐴(,)𝐵))
31, 2sselid 3974 . . . 4 (𝜑𝑀 ∈ ℝ)
4 dvivth.2 . . . . 5 (𝜑𝑁 ∈ (𝐴(,)𝐵))
51, 4sselid 3974 . . . 4 (𝜑𝑁 ∈ ℝ)
6 dvivth.5 . . . . 5 (𝜑𝑀 < 𝑁)
73, 5, 6ltled 11394 . . . 4 (𝜑𝑀𝑁)
8 dvivth.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
9 cncff 24857 . . . . . . . . . 10 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
1110ffvelcdmda 7093 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
12 dvfre 25927 . . . . . . . . . . . . . 14 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1310, 1, 12sylancl 584 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
14 dvivth.4 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
154, 14eleqtrrd 2828 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
1613, 15ffvelcdmd 7094 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
172, 14eleqtrrd 2828 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ dom (ℝ D 𝐹))
1813, 17ffvelcdmd 7094 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
19 iccssre 13441 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
2016, 18, 19syl2anc 582 . . . . . . . . . . 11 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
21 dvivth.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
2220, 21sseldd 3977 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2322adantr 479 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
241a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2524sselda 3976 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
2623, 25remulcld 11276 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℝ)
2711, 26resubcld 11674 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐹𝑦) − (𝐶 · 𝑦)) ∈ ℝ)
28 dvivth.7 . . . . . . 7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
2927, 28fmptd 7123 . . . . . 6 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
30 iccssioo2 13432 . . . . . . 7 ((𝑀 ∈ (𝐴(,)𝐵) ∧ 𝑁 ∈ (𝐴(,)𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
312, 4, 30syl2anc 582 . . . . . 6 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
3229, 31fssresd 6764 . . . . 5 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ)
33 ax-resscn 11197 . . . . . 6 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
35 fss 6739 . . . . . . . . 9 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3629, 33, 35sylancl 584 . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3728oveq2i 7430 . . . . . . . . . . 11 (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦))))
38 reelprrecn 11232 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
4011recnd 11274 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
4114feq2d 6709 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4213, 41mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4342ffvelcdmda 7093 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
4410feqmptd 6966 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
4544oveq2d 7435 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
4642feqmptd 6966 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4745, 46eqtr3d 2767 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4826recnd 11274 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℂ)
49 remulcl 11225 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5022, 49sylan 578 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5150recnd 11274 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℂ)
5222adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ)
5334sselda 3976 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
54 1cnd 11241 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
5539dvmptid 25933 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
5622recnd 11274 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
5739, 53, 54, 55, 56dvmptcmul 25940 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ (𝐶 · 1)))
5856mulridd 11263 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 · 1) = 𝐶)
5958mpteq2dv 5251 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐶 · 1)) = (𝑦 ∈ ℝ ↦ 𝐶))
6057, 59eqtrd 2765 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ 𝐶))
61 eqid 2725 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261tgioo2 24763 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
63 iooretop 24726 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
6539, 51, 52, 60, 24, 62, 61, 64dvmptres 25939 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐶 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝐶))
6639, 40, 43, 47, 48, 23, 65dvmptsub 25943 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6737, 66eqtrid 2777 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6867dmeqd 5908 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐺) = dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
69 dmmptg 6248 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴(,)𝐵)(((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V → dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵))
70 ovex 7452 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V
7170a1i 11 . . . . . . . . . 10 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V)
7269, 71mprg 3056 . . . . . . . . 9 dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵)
7368, 72eqtrdi 2781 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
74 dvcn 25895 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
7534, 36, 24, 73, 74syl31anc 1370 . . . . . . 7 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
76 rescncf 24861 . . . . . . 7 ((𝑀[,]𝑁) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)))
7731, 75, 76sylc 65 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
78 cncfcdm 24862 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)) → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
7933, 77, 78sylancr 585 . . . . 5 (𝜑 → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
8032, 79mpbird 256 . . . 4 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
813, 5, 7, 80evthicc 25432 . . 3 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ∧ ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧)))
8281simpld 493 . 2 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥))
83 fvres 6915 . . . . . . . 8 (𝑧 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) = (𝐺𝑧))
84 fvres 6915 . . . . . . . 8 (𝑥 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) = (𝐺𝑥))
8583, 84breqan12rd 5166 . . . . . . 7 ((𝑥 ∈ (𝑀[,]𝑁) ∧ 𝑧 ∈ (𝑀[,]𝑁)) → (((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ (𝐺𝑧) ≤ (𝐺𝑥)))
8685ralbidva 3165 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
8786adantl 480 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
88 ioossicc 13445 . . . . . 6 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
89 ssralv 4045 . . . . . 6 ((𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9088, 89ax-mp 5 . . . . 5 (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
9187, 90biimtrdi 252 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9231sselda 3976 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴(,)𝐵))
9342ffvelcdmda 7093 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9492, 93syldan 589 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9594recnd 11274 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9695adantr 479 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9756ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℂ)
9867fveq1d 6898 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
9998adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
100 fveq2 6896 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
101100oveq1d 7434 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D 𝐹)‘𝑦) − 𝐶) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
102 eqid 2725 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))
103 ovex 7452 . . . . . . . . . . . 12 (((ℝ D 𝐹)‘𝑥) − 𝐶) ∈ V
104101, 102, 103fvmpt 7004 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10592, 104syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10699, 105eqtrd 2765 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
107106adantr 479 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10829ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1091a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
110 simprl 769 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝑁))
11188, 31sstrid 3988 . . . . . . . . . 10 (𝜑 → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
112111ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
11392adantr 479 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
11473ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
115113, 114eleqtrrd 2828 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
116 simprr 771 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
117 fveq2 6896 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
118117breq1d 5159 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐺𝑧) ≤ (𝐺𝑥) ↔ (𝐺𝑤) ≤ (𝐺𝑥)))
119118cbvralvw 3224 . . . . . . . . . 10 (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
120116, 119sylib 217 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
121108, 109, 110, 112, 115, 120dvferm 25964 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = 0)
122107, 121eqtr3d 2767 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) = 0)
12396, 97, 122subeq0d 11611 . . . . . 6 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
124123exp32 419 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
125 vex 3465 . . . . . . 7 𝑥 ∈ V
126125elpr 4654 . . . . . 6 (𝑥 ∈ {𝑀, 𝑁} ↔ (𝑥 = 𝑀𝑥 = 𝑁))
127106adantr 479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
12829ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1291a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
130 simprl 769 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑀)
131 eliooord 13418 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑀𝑀 < 𝐵))
1322, 131syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑀𝑀 < 𝐵))
133132simpld 493 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝑀)
134 ne0i 4334 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
135 ndmioo 13386 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
136135necon1ai 2957 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1372, 134, 1363syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
138137simpld 493 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1395rexrd 11296 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ*)
140 elioo2 13400 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
141138, 139, 140syl2anc 582 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
1423, 133, 6, 141mpbir3and 1339 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (𝐴(,)𝑁))
143142ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑀 ∈ (𝐴(,)𝑁))
144130, 143eqeltrd 2825 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝑁))
145137simprd 494 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
146 eliooord 13418 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑁𝑁 < 𝐵))
1474, 146syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑁𝑁 < 𝐵))
148147simprd 494 . . . . . . . . . . . . . . 15 (𝜑𝑁 < 𝐵)
149139, 145, 148xrltled 13164 . . . . . . . . . . . . . 14 (𝜑𝑁𝐵)
150 iooss2 13395 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑁𝐵) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
151145, 149, 150syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
152151ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
15392adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
15473ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
155153, 154eleqtrrd 2828 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
156 simprr 771 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
157156, 119sylib 217 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
158130oveq1d 7434 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑥(,)𝑁) = (𝑀(,)𝑁))
159158raleqdv 3314 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥)))
160157, 159mpbird 256 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
161128, 129, 144, 152, 155, 160dvferm1 25961 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) ≤ 0)
162127, 161eqbrtrrd 5173 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0)
16394adantr 479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
16422ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
165163, 164suble0d 11837 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0 ↔ ((ℝ D 𝐹)‘𝑥) ≤ 𝐶))
166162, 165mpbid 231 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
167 elicc2 13424 . . . . . . . . . . . . . 14 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
16816, 18, 167syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
16921, 168mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀)))
170169simp3d 1141 . . . . . . . . . . 11 (𝜑𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
171170ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
172130fveq2d 6900 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑀))
173171, 172breqtrrd 5177 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
174163, 164letri3d 11388 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
175166, 173, 174mpbir2and 711 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
176175exp32 419 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑀 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
177 simprl 769 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑁)
178177fveq2d 6900 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑁))
179169simp2d 1140 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
180179ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
181178, 180eqbrtrd 5171 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
18229ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1831a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
1843rexrd 11296 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ*)
185 elioo2 13400 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
186184, 145, 185syl2anc 582 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
1875, 6, 148, 186mpbir3and 1339 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (𝑀(,)𝐵))
188187ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑁 ∈ (𝑀(,)𝐵))
189177, 188eqeltrd 2825 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝐵))
190138, 184, 133xrltled 13164 . . . . . . . . . . . . . 14 (𝜑𝐴𝑀)
191 iooss1 13394 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑀) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
192138, 190, 191syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
193192ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
19492adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
19573ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
196194, 195eleqtrrd 2828 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
197 simprr 771 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
198197, 119sylib 217 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
199177oveq2d 7435 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑥) = (𝑀(,)𝑁))
200199raleqdv 3314 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥)))
201198, 200mpbird 256 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥))
202182, 183, 189, 193, 196, 201dvferm2 25963 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ ((ℝ D 𝐺)‘𝑥))
203106adantr 479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
204202, 203breqtrd 5175 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶))
20594adantr 479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
20622ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
207205, 206subge0d 11836 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶) ↔ 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)))
208204, 207mpbid 231 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
209205, 206letri3d 11388 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
210181, 208, 209mpbir2and 711 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
211210exp32 419 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑁 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
212176, 211jaod 857 . . . . . 6 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑥 = 𝑀𝑥 = 𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
213126, 212biimtrid 241 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ {𝑀, 𝑁} → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
214 elun 4145 . . . . . . 7 (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
215 prunioo 13493 . . . . . . . . 9 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*𝑀𝑁) → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
216184, 139, 7, 215syl3anc 1368 . . . . . . . 8 (𝜑 → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
217216eleq2d 2811 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
218214, 217bitr3id 284 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
219218biimpar 476 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
220124, 213, 219mpjaod 858 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
22191, 220syld 47 . . 3 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
222221reximdva 3157 . 2 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶))
22382, 222mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  Vcvv 3461  cun 3942  wss 3944  c0 4322  {cpr 4632   class class class wbr 5149  cmpt 5232  dom cdm 5678  ran crn 5679  cres 5680  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   · cmul 11145  *cxr 11279   < clt 11280  cle 11281  cmin 11476  (,)cioo 13359  [,]cicc 13362  TopOpenctopn 17406  topGenctg 17422  fldccnfld 21296  cnccncf 24840   D cdv 25836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840
This theorem is referenced by:  dvivthlem2  25986
  Copyright terms: Public domain W3C validator