MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem3 Structured version   Visualization version   GIF version

Theorem ulmdvlem3 25761
Description: Lemma for ulmdv 25762. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (ℤ𝑀)
ulmdv.s (𝜑𝑆 ∈ {ℝ, ℂ})
ulmdv.m (𝜑𝑀 ∈ ℤ)
ulmdv.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))
ulmdv.g (𝜑𝐺:𝑋⟶ℂ)
ulmdv.l ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
ulmdv.u (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
Assertion
Ref Expression
ulmdvlem3 ((𝜑𝑧𝑋) → 𝑧(𝑆 D 𝐺)(𝐻𝑧))
Distinct variable groups:   𝑧,𝑘,𝐹   𝑧,𝐺   𝑧,𝐻   𝑘,𝑀   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧   𝑘,𝑋,𝑧   𝑘,𝑍,𝑧
Allowed substitution hints:   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑧)

Proof of Theorem ulmdvlem3
Dummy variables 𝑗 𝑚 𝑛 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biidd 261 . . . 4 (𝑘 = 𝑀 → (𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ↔ 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)))
2 ulmdv.z . . . . . . 7 𝑍 = (ℤ𝑀)
3 ulmdv.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
4 ulmdv.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 ulmdv.f . . . . . . 7 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑋))
6 ulmdv.g . . . . . . 7 (𝜑𝐺:𝑋⟶ℂ)
7 ulmdv.l . . . . . . 7 ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
8 ulmdv.u . . . . . . 7 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
92, 3, 4, 5, 6, 7, 8ulmdvlem2 25760 . . . . . 6 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) = 𝑋)
10 recnprss 25268 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
113, 10syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
1211adantr 481 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑆 ⊆ ℂ)
135ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑋))
14 elmapi 8787 . . . . . . . 8 ((𝐹𝑘) ∈ (ℂ ↑m 𝑋) → (𝐹𝑘):𝑋⟶ℂ)
1513, 14syl 17 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑋⟶ℂ)
16 dvbsss 25266 . . . . . . . 8 dom (𝑆 D (𝐹𝑘)) ⊆ 𝑆
179, 16eqsstrrdi 3999 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑋𝑆)
18 eqid 2736 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
19 eqid 2736 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2012, 15, 17, 18, 19dvbssntr 25264 . . . . . 6 ((𝜑𝑘𝑍) → dom (𝑆 D (𝐹𝑘)) ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
219, 20eqsstrrd 3983 . . . . 5 ((𝜑𝑘𝑍) → 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
2221ralrimiva 3143 . . . 4 (𝜑 → ∀𝑘𝑍 𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
23 uzid 12778 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
244, 23syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
2524, 2eleqtrrdi 2849 . . . 4 (𝜑𝑀𝑍)
261, 22, 25rspcdva 3582 . . 3 (𝜑𝑋 ⊆ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
2726sselda 3944 . 2 ((𝜑𝑧𝑋) → 𝑧 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))
28 ulmcl 25740 . . . . 5 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝐻:𝑋⟶ℂ)
298, 28syl 17 . . . 4 (𝜑𝐻:𝑋⟶ℂ)
3029ffvelcdmda 7035 . . 3 ((𝜑𝑧𝑋) → (𝐻𝑧) ∈ ℂ)
31 breq2 5109 . . . . . . . 8 (𝑠 = ((𝑟 / 2) / 2) → ((abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠 ↔ (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2)))
32312ralbidv 3212 . . . . . . 7 (𝑠 = ((𝑟 / 2) / 2) → (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠 ↔ ∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2)))
3332rexralbidv 3214 . . . . . 6 (𝑠 = ((𝑟 / 2) / 2) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠 ↔ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2)))
34 ulmrel 25737 . . . . . . . . . 10 Rel (⇝𝑢𝑋)
35 releldm 5899 . . . . . . . . . 10 ((Rel (⇝𝑢𝑋) ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) ∈ dom (⇝𝑢𝑋))
3634, 8, 35sylancr 587 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) ∈ dom (⇝𝑢𝑋))
37 ulmscl 25738 . . . . . . . . . . 11 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝑋 ∈ V)
388, 37syl 17 . . . . . . . . . 10 (𝜑𝑋 ∈ V)
39 ovex 7390 . . . . . . . . . . . . 13 (𝑆 D (𝐹𝑘)) ∈ V
4039rgenw 3068 . . . . . . . . . . . 12 𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V
41 eqid 2736 . . . . . . . . . . . . 13 (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) = (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))
4241fnmpt 6641 . . . . . . . . . . . 12 (∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
4340, 42mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
44 ulmf2 25743 . . . . . . . . . . 11 (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
4543, 8, 44syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
462, 4, 38, 45ulmcau2 25755 . . . . . . . . 9 (𝜑 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) ∈ dom (⇝𝑢𝑋) ↔ ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠))
4736, 46mpbid 231 . . . . . . . 8 (𝜑 → ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠)
482uztrn2 12782 . . . . . . . . . . . . . . . . . 18 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
4948ad2ant2lr 746 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → 𝑛𝑍)
50 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
5150oveq2d 7373 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑛)))
52 ovex 7390 . . . . . . . . . . . . . . . . . 18 (𝑆 D (𝐹𝑛)) ∈ V
5351, 41, 52fvmpt 6948 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
5449, 53syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
5554fveq1d 6844 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) = ((𝑆 D (𝐹𝑛))‘𝑥))
56 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → 𝑚 ∈ (ℤ𝑛))
572uztrn2 12782 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
5849, 56, 57syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → 𝑚𝑍)
59 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
6059oveq2d 7373 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑚)))
61 ovex 7390 . . . . . . . . . . . . . . . . . 18 (𝑆 D (𝐹𝑚)) ∈ V
6260, 41, 61fvmpt 6948 . . . . . . . . . . . . . . . . 17 (𝑚𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚) = (𝑆 D (𝐹𝑚)))
6358, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚) = (𝑆 D (𝐹𝑚)))
6463fveq1d 6844 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥) = ((𝑆 D (𝐹𝑚))‘𝑥))
6555, 64oveq12d 7375 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → ((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥)) = (((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥)))
6665fveq2d 6846 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) = (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))))
6766breq1d 5115 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → ((abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
6867ralbidv 3174 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝑛 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑛))) → (∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
69682ralbidva 3210 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
7069rexbidva 3173 . . . . . . . . 9 (𝜑 → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
7170ralbidv 3174 . . . . . . . 8 (𝜑 → (∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘((((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑥) − (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠))
7247, 71mpbid 231 . . . . . . 7 (𝜑 → ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠)
7372ad2antrr 724 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑠 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < 𝑠)
74 rphalfcl 12942 . . . . . . . 8 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
7574adantl 482 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
76 rphalfcl 12942 . . . . . . 7 ((𝑟 / 2) ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
7775, 76syl 17 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈ ℝ+)
7833, 73, 77rspcdva 3582 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2))
794ad2antrr 724 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
8051fveq1d 6844 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑆 D (𝐹𝑘))‘𝑧) = ((𝑆 D (𝐹𝑛))‘𝑧))
81 eqid 2736 . . . . . . . 8 (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧)) = (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧))
82 fvex 6855 . . . . . . . 8 ((𝑆 D (𝐹𝑛))‘𝑧) ∈ V
8380, 81, 82fvmpt 6948 . . . . . . 7 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧))‘𝑛) = ((𝑆 D (𝐹𝑛))‘𝑧))
8483adantl 482 . . . . . 6 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧))‘𝑛) = ((𝑆 D (𝐹𝑛))‘𝑧))
8545ad2antrr 724 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑m 𝑋))
86 simplr 767 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑧𝑋)
872fvexi 6856 . . . . . . . . 9 𝑍 ∈ V
8887mptex 7173 . . . . . . . 8 (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧)) ∈ V
8988a1i 11 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧)) ∈ V)
9053adantl 482 . . . . . . . . 9 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
9190fveq1d 6844 . . . . . . . 8 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑧) = ((𝑆 D (𝐹𝑛))‘𝑧))
9291, 84eqtr4d 2779 . . . . . . 7 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛)‘𝑧) = ((𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧))‘𝑛))
938ad2antrr 724 . . . . . . 7 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
942, 79, 85, 86, 89, 92, 93ulmclm 25746 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘𝑍 ↦ ((𝑆 D (𝐹𝑘))‘𝑧)) ⇝ (𝐻𝑧))
952, 79, 75, 84, 94climi2 15393 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2))
962rexanuz2 15234 . . . . . . 7 (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ↔ (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))
972r19.2uz 15236 . . . . . . 7 (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) → ∃𝑛𝑍 (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))
9896, 97sylbir 234 . . . . . 6 ((∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) → ∃𝑛𝑍 (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))
99 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 → ((𝐹𝑛)‘𝑦) = ((𝐹𝑛)‘𝑣))
10099oveq1d 7372 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → (((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) = (((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)))
101 oveq1 7364 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → (𝑦𝑧) = (𝑣𝑧))
102100, 101oveq12d 7375 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)) = ((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)))
103 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) = (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))
104 ovex 7390 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) ∈ V
105102, 103, 104fvmpt 6948 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) = ((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)))
106105fvoveq1d 7379 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝑋 ∖ {𝑧}) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) = (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))))
107 id 22 . . . . . . . . . . . . . 14 (𝑠 = ((𝑟 / 2) / 2) → 𝑠 = ((𝑟 / 2) / 2))
108106, 107breqan12rd 5122 . . . . . . . . . . . . 13 ((𝑠 = ((𝑟 / 2) / 2) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → ((abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠 ↔ (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
109108imbi2d 340 . . . . . . . . . . . 12 ((𝑠 = ((𝑟 / 2) / 2) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠) ↔ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2))))
110109ralbidva 3172 . . . . . . . . . . 11 (𝑠 = ((𝑟 / 2) / 2) → (∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠) ↔ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2))))
111110rexbidv 3175 . . . . . . . . . 10 (𝑠 = ((𝑟 / 2) / 2) → (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠) ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2))))
112 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑧𝑋)
11385ffvelcdmda 7035 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) ∈ (ℂ ↑m 𝑋))
11490, 113eqeltrrd 2839 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑆 D (𝐹𝑛)) ∈ (ℂ ↑m 𝑋))
115 elmapi 8787 . . . . . . . . . . . . . . . . 17 ((𝑆 D (𝐹𝑛)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹𝑛)):𝑋⟶ℂ)
116 fdm 6677 . . . . . . . . . . . . . . . . 17 ((𝑆 D (𝐹𝑛)):𝑋⟶ℂ → dom (𝑆 D (𝐹𝑛)) = 𝑋)
117114, 115, 1163syl 18 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → dom (𝑆 D (𝐹𝑛)) = 𝑋)
118112, 117eleqtrrd 2841 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑧 ∈ dom (𝑆 D (𝐹𝑛)))
1193ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑆 ∈ {ℝ, ℂ})
120 dvfg 25270 . . . . . . . . . . . . . . . 16 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹𝑛)):dom (𝑆 D (𝐹𝑛))⟶ℂ)
121 ffun 6671 . . . . . . . . . . . . . . . 16 ((𝑆 D (𝐹𝑛)):dom (𝑆 D (𝐹𝑛))⟶ℂ → Fun (𝑆 D (𝐹𝑛)))
122 funfvbrb 7001 . . . . . . . . . . . . . . . 16 (Fun (𝑆 D (𝐹𝑛)) → (𝑧 ∈ dom (𝑆 D (𝐹𝑛)) ↔ 𝑧(𝑆 D (𝐹𝑛))((𝑆 D (𝐹𝑛))‘𝑧)))
123119, 120, 121, 1224syl 19 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑧 ∈ dom (𝑆 D (𝐹𝑛)) ↔ 𝑧(𝑆 D (𝐹𝑛))((𝑆 D (𝐹𝑛))‘𝑧)))
124118, 123mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑧(𝑆 D (𝐹𝑛))((𝑆 D (𝐹𝑛))‘𝑧))
125119, 10syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑆 ⊆ ℂ)
1265ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑋))
127126ffvelcdmda 7035 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑋))
128 elmapi 8787 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℂ ↑m 𝑋) → (𝐹𝑛):𝑋⟶ℂ)
129127, 128syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝐹𝑛):𝑋⟶ℂ)
130 biidd 261 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑀 → (𝑋𝑆𝑋𝑆))
13117ralrimiva 3143 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 𝑋𝑆)
132130, 131, 25rspcdva 3582 . . . . . . . . . . . . . . . 16 (𝜑𝑋𝑆)
133132ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑋𝑆)
13418, 19, 103, 125, 129, 133eldv 25262 . . . . . . . . . . . . . 14 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑧(𝑆 D (𝐹𝑛))((𝑆 D (𝐹𝑛))‘𝑧) ↔ (𝑧 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ ((𝑆 D (𝐹𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) lim 𝑧))))
135124, 134mpbid 231 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑧 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ ((𝑆 D (𝐹𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) lim 𝑧)))
136135simprd 496 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑆 D (𝐹𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) lim 𝑧))
137132adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑋𝑆)
13811adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑆 ⊆ ℂ)
139137, 138sstrd 3954 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → 𝑋 ⊆ ℂ)
140139ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑋 ⊆ ℂ)
141129, 140, 112dvlem 25260 . . . . . . . . . . . . . 14 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) ∧ 𝑦 ∈ (𝑋 ∖ {𝑧})) → ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)) ∈ ℂ)
142141fmpttd 7063 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))):(𝑋 ∖ {𝑧})⟶ℂ)
143140ssdifssd 4102 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (𝑋 ∖ {𝑧}) ⊆ ℂ)
144140, 112sseldd 3945 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → 𝑧 ∈ ℂ)
145142, 143, 144ellimc3 25243 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (((𝑆 D (𝐹𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧))) lim 𝑧) ↔ (((𝑆 D (𝐹𝑛))‘𝑧) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠))))
146136, 145mpbid 231 . . . . . . . . . . 11 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (((𝑆 D (𝐹𝑛))‘𝑧) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠)))
147146simprd 496 . . . . . . . . . 10 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ∀𝑠 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹𝑛)‘𝑦) − ((𝐹𝑛)‘𝑧)) / (𝑦𝑧)))‘𝑣) − ((𝑆 D (𝐹𝑛))‘𝑧))) < 𝑠))
14877adantr 481 . . . . . . . . . 10 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ((𝑟 / 2) / 2) ∈ ℝ+)
149111, 147, 148rspcdva 3582 . . . . . . . . 9 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
150149adantrr 715 . . . . . . . 8 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
151 anass 469 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ↔ ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ ((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+)))
152 df-3an 1089 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))) ↔ ((𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))
153 anass 469 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ↔ (𝜑 ∧ (𝑧𝑋𝑟 ∈ ℝ+)))
1547ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
155 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑠 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑠))
156155mpteq2dv 5207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑠 → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑠)))
157 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑠 → (𝐺𝑧) = (𝐺𝑠))
158156, 157breq12d 5118 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑠 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ↔ (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑠)) ⇝ (𝐺𝑠)))
159158rspccva 3580 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ∧ 𝑠𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑠)) ⇝ (𝐺𝑠))
160154, 159sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑠)) ⇝ (𝐺𝑠))
161 simprll 777 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑧𝑋)
162 simprlr 778 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑟 ∈ ℝ+)
163 simprr3 1223 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))))
164 simplll 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → 𝑢 ∈ ℝ+)
165163, 164syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑢 ∈ ℝ+)
166 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → 𝑤 ∈ ℝ+)
167163, 166syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑤 ∈ ℝ+)
168 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))
169163, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))
170169simpld 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑢 < 𝑤)
171169simprd 496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)
172 simpr3 1196 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))
173163, 172syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))
174173simprd 496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (abs‘(𝑣𝑧)) < 𝑢)
175 simprr1 1221 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑛𝑍)
176 simprr2 1222 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))
177176simpld 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → ∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2))
178176simprd 496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2))
179 simpr1 1194 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → 𝑣 ∈ (𝑋 ∖ {𝑧}))
180163, 179syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑣 ∈ (𝑋 ∖ {𝑧}))
181180eldifad 3922 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑣𝑋)
182173simpld 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → 𝑣𝑧)
183 simpr2 1195 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
184163, 183syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
185182, 184mpand 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → ((abs‘(𝑣𝑧)) < 𝑤 → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))
1862, 3, 4, 5, 6, 160, 8, 161, 162, 165, 167, 170, 171, 174, 175, 177, 178, 181, 182, 185ulmdvlem1 25759 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑧𝑋𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
187186anassrs 468 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
188153, 187sylanb 581 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
189152, 188sylan2br 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
190189anassrs 468 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢)))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
191190anassrs 468 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ ((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+)) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
192151, 191sylanb 581 . . . . . . . . . . . . . . 15 (((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢))) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)
1931923exp2 1354 . . . . . . . . . . . . . 14 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) → (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟))))
194193imp 407 . . . . . . . . . . . . 13 (((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)))
195 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑣 → (𝐺𝑦) = (𝐺𝑣))
196195oveq1d 7372 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑣 → ((𝐺𝑦) − (𝐺𝑧)) = ((𝐺𝑣) − (𝐺𝑧)))
197196, 101oveq12d 7375 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 → (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)) = (((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)))
198 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))) = (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))
199 ovex 7390 . . . . . . . . . . . . . . . . . 18 (((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) ∈ V
200197, 198, 199fvmpt 6948 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) = (((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)))
201200fvoveq1d 7379 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝑋 ∖ {𝑧}) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) = (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))))
202201breq1d 5115 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟 ↔ (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟))
203202imbi2d 340 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟) ↔ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)))
204203adantl 482 . . . . . . . . . . . . 13 (((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟) ↔ ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘((((𝐺𝑣) − (𝐺𝑧)) / (𝑣𝑧)) − (𝐻𝑧))) < 𝑟)))
205194, 204sylibrd 258 . . . . . . . . . . . 12 (((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟)))
206205ralimdva 3164 . . . . . . . . . . 11 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟)))
207206impr 455 . . . . . . . . . 10 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
208207an32s 650 . . . . . . . . 9 ((((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
209 cnxmet 24136 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
210 xmetres2 23714 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
211209, 138, 210sylancr 587 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
212211ad3antrrr 728 . . . . . . . . . 10 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
21319cnfldtop 24147 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ Top
214 resttop 22511 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ}) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
215213, 3, 214sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
21619cnfldtopon 24146 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
217 resttopon 22512 . . . . . . . . . . . . . . . . . . 19 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
218216, 11, 217sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
219 toponuni 22263 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
220218, 219syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
221132, 220sseqtrd 3984 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ((TopOpen‘ℂfld) ↾t 𝑆))
222 eqid 2736 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
223222ntrss2 22408 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
224215, 221, 223syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋)
225224, 26eqssd 3961 . . . . . . . . . . . . . 14 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)
226222isopn3 22417 . . . . . . . . . . . . . . 15 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋))
227215, 221, 226syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) ↔ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋))
228225, 227mpbird 256 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
229 eqid 2736 . . . . . . . . . . . . . . 15 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
23019cnfldtopn 24145 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
231 eqid 2736 . . . . . . . . . . . . . . 15 (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
232229, 230, 231metrest 23880 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
233209, 11, 232sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
234228, 233eleqtrd 2840 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
235234adantr 481 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑋 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
236235ad3antrrr 728 . . . . . . . . . 10 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑋 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
23786ad2antrr 724 . . . . . . . . . 10 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑧𝑋)
238 simprl 769 . . . . . . . . . 10 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑤 ∈ ℝ+)
239231mopni3 23850 . . . . . . . . . 10 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑋 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) ∧ 𝑧𝑋) ∧ 𝑤 ∈ ℝ+) → ∃𝑢 ∈ ℝ+ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))
240212, 236, 237, 238, 239syl31anc 1373 . . . . . . . . 9 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∃𝑢 ∈ ℝ+ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑢) ⊆ 𝑋))
241208, 240reximddv 3168 . . . . . . . 8 (((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑤) → (abs‘(((((𝐹𝑛)‘𝑣) − ((𝐹𝑛)‘𝑧)) / (𝑣𝑧)) − ((𝑆 D (𝐹𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
242150, 241rexlimddv 3158 . . . . . . 7 ((((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)))) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
243242rexlimdvaa 3153 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑛𝑍 (∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟)))
24498, 243syl5 34 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ((∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑛)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑛))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(((𝑆 D (𝐹𝑛))‘𝑧) − (𝐻𝑧))) < (𝑟 / 2)) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟)))
24578, 95, 244mp2and 697 . . . 4 (((𝜑𝑧𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
246245ralrimiva 3143 . . 3 ((𝜑𝑧𝑋) → ∀𝑟 ∈ ℝ+𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))
2476adantr 481 . . . . . 6 ((𝜑𝑧𝑋) → 𝐺:𝑋⟶ℂ)
248 simpr 485 . . . . . 6 ((𝜑𝑧𝑋) → 𝑧𝑋)
249247, 139, 248dvlem 25260 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑦 ∈ (𝑋 ∖ {𝑧})) → (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)) ∈ ℂ)
250249fmpttd 7063 . . . 4 ((𝜑𝑧𝑋) → (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))):(𝑋 ∖ {𝑧})⟶ℂ)
251139ssdifssd 4102 . . . 4 ((𝜑𝑧𝑋) → (𝑋 ∖ {𝑧}) ⊆ ℂ)
252139, 248sseldd 3945 . . . 4 ((𝜑𝑧𝑋) → 𝑧 ∈ ℂ)
253250, 251, 252ellimc3 25243 . . 3 ((𝜑𝑧𝑋) → ((𝐻𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))) lim 𝑧) ↔ ((𝐻𝑧) ∈ ℂ ∧ ∀𝑟 ∈ ℝ+𝑢 ∈ ℝ+𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣𝑧 ∧ (abs‘(𝑣𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧)))‘𝑣) − (𝐻𝑧))) < 𝑟))))
25430, 246, 253mpbir2and 711 . 2 ((𝜑𝑧𝑋) → (𝐻𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))) lim 𝑧))
25518, 19, 198, 138, 247, 137eldv 25262 . 2 ((𝜑𝑧𝑋) → (𝑧(𝑆 D 𝐺)(𝐻𝑧) ↔ (𝑧 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ (𝐻𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺𝑦) − (𝐺𝑧)) / (𝑦𝑧))) lim 𝑧))))
25627, 254, 255mpbir2and 711 1 ((𝜑𝑧𝑋) → 𝑧(𝑆 D 𝐺)(𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  {csn 4586  {cpr 4588   cuni 4865   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  cres 5635  ccom 5637  Rel wrel 5638  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  cr 11050   < clt 11189  cmin 11385   / cdiv 11812  2c2 12208  cz 12499  cuz 12763  +crp 12915  abscabs 15119  cli 15366  t crest 17302  TopOpenctopn 17303  ∞Metcxmet 20781  ballcbl 20783  MetOpencmopn 20786  fldccnfld 20796  Topctop 22242  TopOnctopon 22259  intcnt 22368   lim climc 25226   D cdv 25227  𝑢culm 25735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736
This theorem is referenced by:  ulmdv  25762
  Copyright terms: Public domain W3C validator