Step | Hyp | Ref
| Expression |
1 | | biidd 261 |
. . . 4
⊢ (𝑘 = 𝑀 → (𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ↔ 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))) |
2 | | ulmdv.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | ulmdv.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
4 | | ulmdv.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | | ulmdv.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) |
6 | | ulmdv.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
7 | | ulmdv.l |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
8 | | ulmdv.u |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
9 | 2, 3, 4, 5, 6, 7, 8 | ulmdvlem2 25465 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) |
10 | | recnprss 24973 |
. . . . . . . . 9
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
11 | 3, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑆 ⊆ ℂ) |
13 | 5 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑋)) |
14 | | elmapi 8595 |
. . . . . . . 8
⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑋) → (𝐹‘𝑘):𝑋⟶ℂ) |
15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑋⟶ℂ) |
16 | | dvbsss 24971 |
. . . . . . . 8
⊢ dom
(𝑆 D (𝐹‘𝑘)) ⊆ 𝑆 |
17 | 9, 16 | eqsstrrdi 3972 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ⊆ 𝑆) |
18 | | eqid 2738 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) |
19 | | eqid 2738 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
20 | 12, 15, 17, 18, 19 | dvbssntr 24969 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
21 | 9, 20 | eqsstrrd 3956 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
22 | 21 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
23 | | uzid 12526 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
24 | 4, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
25 | 24, 2 | eleqtrrdi 2850 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
26 | 1, 22, 25 | rspcdva 3554 |
. . 3
⊢ (𝜑 → 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
27 | 26 | sselda 3917 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
28 | | ulmcl 25445 |
. . . . 5
⊢ ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻 → 𝐻:𝑋⟶ℂ) |
29 | 8, 28 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐻:𝑋⟶ℂ) |
30 | 29 | ffvelrnda 6943 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝐻‘𝑧) ∈ ℂ) |
31 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑠 = ((𝑟 / 2) / 2) → ((abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠 ↔ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2))) |
32 | 31 | 2ralbidv 3122 |
. . . . . . 7
⊢ (𝑠 = ((𝑟 / 2) / 2) → (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2))) |
33 | 32 | rexralbidv 3229 |
. . . . . 6
⊢ (𝑠 = ((𝑟 / 2) / 2) → (∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠 ↔ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2))) |
34 | | ulmrel 25442 |
. . . . . . . . . 10
⊢ Rel
(⇝𝑢‘𝑋) |
35 | | releldm 5842 |
. . . . . . . . . 10
⊢ ((Rel
(⇝𝑢‘𝑋) ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) ∈ dom
(⇝𝑢‘𝑋)) |
36 | 34, 8, 35 | sylancr 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) ∈ dom
(⇝𝑢‘𝑋)) |
37 | | ulmscl 25443 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻 → 𝑋 ∈ V) |
38 | 8, 37 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ V) |
39 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢ (𝑆 D (𝐹‘𝑘)) ∈ V |
40 | 39 | rgenw 3075 |
. . . . . . . . . . . 12
⊢
∀𝑘 ∈
𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V |
41 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) |
42 | 41 | fnmpt 6557 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
43 | 40, 42 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) |
44 | | ulmf2 25448 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍 ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) |
45 | 43, 8, 44 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) |
46 | 2, 4, 38, 45 | ulmcau2 25460 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) ∈ dom
(⇝𝑢‘𝑋) ↔ ∀𝑠 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠)) |
47 | 36, 46 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑠 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠) |
48 | 2 | uztrn2 12530 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → 𝑛 ∈ 𝑍) |
49 | 48 | ad2ant2lr 744 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → 𝑛 ∈ 𝑍) |
50 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
51 | 50 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑛 → (𝑆 D (𝐹‘𝑘)) = (𝑆 D (𝐹‘𝑛))) |
52 | | ovex 7288 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 D (𝐹‘𝑛)) ∈ V |
53 | 51, 41, 52 | fvmpt 6857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛) = (𝑆 D (𝐹‘𝑛))) |
54 | 49, 53 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛) = (𝑆 D (𝐹‘𝑛))) |
55 | 54 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) = ((𝑆 D (𝐹‘𝑛))‘𝑥)) |
56 | | simprr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → 𝑚 ∈ (ℤ≥‘𝑛)) |
57 | 2 | uztrn2 12530 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
58 | 49, 56, 57 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → 𝑚 ∈ 𝑍) |
59 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
60 | 59 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → (𝑆 D (𝐹‘𝑘)) = (𝑆 D (𝐹‘𝑚))) |
61 | | ovex 7288 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 D (𝐹‘𝑚)) ∈ V |
62 | 60, 41, 61 | fvmpt 6857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚) = (𝑆 D (𝐹‘𝑚))) |
63 | 58, 62 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚) = (𝑆 D (𝐹‘𝑚))) |
64 | 63 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥) = ((𝑆 D (𝐹‘𝑚))‘𝑥)) |
65 | 55, 64 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → ((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥)) = (((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) |
66 | 65 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) = (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥)))) |
67 | 66 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → ((abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) |
68 | 67 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → (∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) |
69 | 68 | 2ralbidva 3121 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) |
70 | 69 | rexbidva 3224 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) |
71 | 70 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑠 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑠 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) |
72 | 47, 71 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ∀𝑠 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠) |
73 | 72 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
∀𝑠 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠) |
74 | | rphalfcl 12686 |
. . . . . . . 8
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ+) |
75 | 74 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈
ℝ+) |
76 | | rphalfcl 12686 |
. . . . . . 7
⊢ ((𝑟 / 2) ∈ ℝ+
→ ((𝑟 / 2) / 2) ∈
ℝ+) |
77 | 75, 76 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈
ℝ+) |
78 | 33, 73, 77 | rspcdva 3554 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2)) |
79 | 4 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈
ℤ) |
80 | 51 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝑆 D (𝐹‘𝑘))‘𝑧) = ((𝑆 D (𝐹‘𝑛))‘𝑧)) |
81 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) = (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) |
82 | | fvex 6769 |
. . . . . . . 8
⊢ ((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ V |
83 | 80, 81, 82 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧))‘𝑛) = ((𝑆 D (𝐹‘𝑛))‘𝑧)) |
84 | 83 | adantl 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧))‘𝑛) = ((𝑆 D (𝐹‘𝑛))‘𝑧)) |
85 | 45 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) |
86 | | simplr 765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑧 ∈ 𝑋) |
87 | 2 | fvexi 6770 |
. . . . . . . . 9
⊢ 𝑍 ∈ V |
88 | 87 | mptex 7081 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) ∈ V |
89 | 88 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) ∈ V) |
90 | 53 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛) = (𝑆 D (𝐹‘𝑛))) |
91 | 90 | fveq1d 6758 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑧) = ((𝑆 D (𝐹‘𝑛))‘𝑧)) |
92 | 91, 84 | eqtr4d 2781 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑧) = ((𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧))‘𝑛)) |
93 | 8 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) |
94 | 2, 79, 85, 86, 89, 92, 93 | ulmclm 25451 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) ⇝ (𝐻‘𝑧)) |
95 | 2, 79, 75, 84, 94 | climi2 15148 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) |
96 | 2 | rexanuz2 14989 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑛 ∈
(ℤ≥‘𝑗)(∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ↔ (∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) |
97 | 2 | r19.2uz 14991 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑛 ∈
(ℤ≥‘𝑗)(∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) → ∃𝑛 ∈ 𝑍 (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) |
98 | 96, 97 | sylbir 234 |
. . . . . 6
⊢
((∃𝑗 ∈
𝑍 ∀𝑛 ∈
(ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) → ∃𝑛 ∈ 𝑍 (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) |
99 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑛)‘𝑦) = ((𝐹‘𝑛)‘𝑣)) |
100 | 99 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑣 → (((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) = (((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧))) |
101 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑣 → (𝑦 − 𝑧) = (𝑣 − 𝑧)) |
102 | 100, 101 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑣 → ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)) = ((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧))) |
103 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) = (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) |
104 | | ovex 7288 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) ∈ V |
105 | 102, 103,
104 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) = ((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧))) |
106 | 105 | fvoveq1d 7277 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) = (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧)))) |
107 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = ((𝑟 / 2) / 2) → 𝑠 = ((𝑟 / 2) / 2)) |
108 | 106, 107 | breqan12rd 5087 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = ((𝑟 / 2) / 2) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → ((abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠 ↔ (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) |
109 | 108 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ ((𝑠 = ((𝑟 / 2) / 2) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠) ↔ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) |
110 | 109 | ralbidva 3119 |
. . . . . . . . . . 11
⊢ (𝑠 = ((𝑟 / 2) / 2) → (∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠) ↔ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) |
111 | 110 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑠 = ((𝑟 / 2) / 2) → (∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠) ↔ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) |
112 | | simpllr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑧 ∈ 𝑋) |
113 | 85 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛) ∈ (ℂ ↑m 𝑋)) |
114 | 90, 113 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑆 D (𝐹‘𝑛)) ∈ (ℂ ↑m 𝑋)) |
115 | | elmapi 8595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 D (𝐹‘𝑛)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹‘𝑛)):𝑋⟶ℂ) |
116 | | fdm 6593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 D (𝐹‘𝑛)):𝑋⟶ℂ → dom (𝑆 D (𝐹‘𝑛)) = 𝑋) |
117 | 114, 115,
116 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑛)) = 𝑋) |
118 | 112, 117 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑧 ∈ dom (𝑆 D (𝐹‘𝑛))) |
119 | 3 | ad3antrrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ {ℝ, ℂ}) |
120 | | dvfg 24975 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D (𝐹‘𝑛)):dom (𝑆 D (𝐹‘𝑛))⟶ℂ) |
121 | | ffun 6587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 D (𝐹‘𝑛)):dom (𝑆 D (𝐹‘𝑛))⟶ℂ → Fun (𝑆 D (𝐹‘𝑛))) |
122 | | funfvbrb 6910 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
(𝑆 D (𝐹‘𝑛)) → (𝑧 ∈ dom (𝑆 D (𝐹‘𝑛)) ↔ 𝑧(𝑆 D (𝐹‘𝑛))((𝑆 D (𝐹‘𝑛))‘𝑧))) |
123 | 119, 120,
121, 122 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑧 ∈ dom (𝑆 D (𝐹‘𝑛)) ↔ 𝑧(𝑆 D (𝐹‘𝑛))((𝑆 D (𝐹‘𝑛))‘𝑧))) |
124 | 118, 123 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑧(𝑆 D (𝐹‘𝑛))((𝑆 D (𝐹‘𝑛))‘𝑧)) |
125 | 119, 10 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑆 ⊆ ℂ) |
126 | 5 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) |
127 | 126 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (ℂ ↑m 𝑋)) |
128 | | elmapi 8595 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) ∈ (ℂ ↑m 𝑋) → (𝐹‘𝑛):𝑋⟶ℂ) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):𝑋⟶ℂ) |
130 | | biidd 261 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑀 → (𝑋 ⊆ 𝑆 ↔ 𝑋 ⊆ 𝑆)) |
131 | 17 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝑋 ⊆ 𝑆) |
132 | 130, 131,
25 | rspcdva 3554 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
133 | 132 | ad3antrrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑋 ⊆ 𝑆) |
134 | 18, 19, 103, 125, 129, 133 | eldv 24967 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑧(𝑆 D (𝐹‘𝑛))((𝑆 D (𝐹‘𝑛))‘𝑧) ↔ (𝑧 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ ((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧)))) |
135 | 124, 134 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑧 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ ((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧))) |
136 | 135 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧)) |
137 | 132 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑋 ⊆ 𝑆) |
138 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑆 ⊆ ℂ) |
139 | 137, 138 | sstrd 3927 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑋 ⊆ ℂ) |
140 | 139 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑋 ⊆ ℂ) |
141 | 129, 140,
112 | dvlem 24965 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) ∧ 𝑦 ∈ (𝑋 ∖ {𝑧})) → ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)) ∈ ℂ) |
142 | 141 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))):(𝑋 ∖ {𝑧})⟶ℂ) |
143 | 140 | ssdifssd 4073 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑋 ∖ {𝑧}) ⊆ ℂ) |
144 | 140, 112 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑧 ∈ ℂ) |
145 | 142, 143,
144 | ellimc3 24948 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧) ↔ (((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠)))) |
146 | 136, 145 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠))) |
147 | 146 | simprd 495 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ∀𝑠 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠)) |
148 | 77 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑟 / 2) / 2) ∈
ℝ+) |
149 | 111, 147,
148 | rspcdva 3554 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) |
150 | 149 | adantrr 713 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) |
151 | | anass 468 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ↔ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ ((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈
ℝ+))) |
152 | | df-3an 1087 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))) ↔ ((𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))))) |
153 | | anass 468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ↔ (𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈
ℝ+))) |
154 | 7 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
155 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑠 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑠)) |
156 | 155 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = 𝑠 → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) = (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑠))) |
157 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = 𝑠 → (𝐺‘𝑧) = (𝐺‘𝑠)) |
158 | 156, 157 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑠 → ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧) ↔ (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑠)) ⇝ (𝐺‘𝑠))) |
159 | 158 | rspccva 3551 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑧 ∈
𝑋 (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧) ∧ 𝑠 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑠)) ⇝ (𝐺‘𝑠)) |
160 | 154, 159 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑠)) ⇝ (𝐺‘𝑠)) |
161 | | simprll 775 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑧 ∈ 𝑋) |
162 | | simprlr 776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑟 ∈ ℝ+) |
163 | | simprr3 1221 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))) |
164 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → 𝑢 ∈ ℝ+) |
165 | 163, 164 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑢 ∈ ℝ+) |
166 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → 𝑤 ∈ ℝ+) |
167 | 163, 166 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑤 ∈ ℝ+) |
168 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) |
169 | 163, 168 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) |
170 | 169 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑢 < 𝑤) |
171 | 169 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋) |
172 | | simpr3 1194 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)) |
173 | 163, 172 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)) |
174 | 173 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (abs‘(𝑣 − 𝑧)) < 𝑢) |
175 | | simprr1 1219 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑛 ∈ 𝑍) |
176 | | simprr2 1220 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) |
177 | 176 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → ∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2)) |
178 | 176 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) |
179 | | simpr1 1192 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → 𝑣 ∈ (𝑋 ∖ {𝑧})) |
180 | 163, 179 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑣 ∈ (𝑋 ∖ {𝑧})) |
181 | 180 | eldifad 3895 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑣 ∈ 𝑋) |
182 | 173 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑣 ≠ 𝑧) |
183 | | simpr2 1193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) |
184 | 163, 183 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) |
185 | 182, 184 | mpand 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → ((abs‘(𝑣 − 𝑧)) < 𝑤 → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) |
186 | 2, 3, 4, 5, 6, 160, 8, 161, 162, 165, 167, 170, 171, 174, 175, 177, 178, 181, 182, 185 | ulmdvlem1 25464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) |
187 | 186 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) |
188 | 153, 187 | sylanb 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) |
189 | 152, 188 | sylan2br 594 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) |
190 | 189 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) |
191 | 190 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ ((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+)) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) |
192 | 151, 191 | sylanb 580 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) |
193 | 192 | 3exp2 1352 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) → (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟)))) |
194 | 193 | imp 406 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟))) |
195 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑣 → (𝐺‘𝑦) = (𝐺‘𝑣)) |
196 | 195 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑣 → ((𝐺‘𝑦) − (𝐺‘𝑧)) = ((𝐺‘𝑣) − (𝐺‘𝑧))) |
197 | 196, 101 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑣 → (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)) = (((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧))) |
198 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) = (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) |
199 | | ovex 7288 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) ∈ V |
200 | 197, 198,
199 | fvmpt 6857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) = (((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧))) |
201 | 200 | fvoveq1d 7277 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) = (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧)))) |
202 | 201 | breq1d 5080 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟 ↔ (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟)) |
203 | 202 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟) ↔ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟))) |
204 | 203 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟) ↔ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟))) |
205 | 194, 204 | sylibrd 258 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟))) |
206 | 205 | ralimdva 3102 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) →
(∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟))) |
207 | 206 | impr 454 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) |
208 | 207 | an32s 648 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) |
209 | | cnxmet 23842 |
. . . . . . . . . . . 12
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
210 | | xmetres2 23422 |
. . . . . . . . . . . 12
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘
− ) ↾ (𝑆
× 𝑆)) ∈
(∞Met‘𝑆)) |
211 | 209, 138,
210 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs ∘ − ) ↾
(𝑆 × 𝑆)) ∈
(∞Met‘𝑆)) |
212 | 211 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ((abs ∘ − )
↾ (𝑆 × 𝑆)) ∈
(∞Met‘𝑆)) |
213 | 19 | cnfldtop 23853 |
. . . . . . . . . . . . . . . . 17
⊢
(TopOpen‘ℂfld) ∈ Top |
214 | | resttop 22219 |
. . . . . . . . . . . . . . . . 17
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ})
→ ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
215 | 213, 3, 214 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
216 | 19 | cnfldtopon 23852 |
. . . . . . . . . . . . . . . . . . 19
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
217 | | resttopon 22220 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
218 | 216, 11, 217 | sylancr 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
219 | | toponuni 21971 |
. . . . . . . . . . . . . . . . . 18
⊢
(((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
220 | 218, 219 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
221 | 132, 220 | sseqtrd 3957 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ⊆ ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
222 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ((TopOpen‘ℂfld)
↾t 𝑆) =
∪ ((TopOpen‘ℂfld)
↾t 𝑆) |
223 | 222 | ntrss2 22116 |
. . . . . . . . . . . . . . . 16
⊢
((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ ((TopOpen‘ℂfld)
↾t 𝑆))
→ ((int‘((TopOpen‘ℂfld) ↾t
𝑆))‘𝑋) ⊆ 𝑋) |
224 | 215, 221,
223 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
225 | 224, 26 | eqssd 3934 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋) |
226 | 222 | isopn3 22125 |
. . . . . . . . . . . . . . 15
⊢
((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ ((TopOpen‘ℂfld)
↾t 𝑆))
→ (𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆) ↔
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)) |
227 | 215, 221,
226 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆) ↔
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)) |
228 | 225, 227 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
229 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ((abs
∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) |
230 | 19 | cnfldtopn 23851 |
. . . . . . . . . . . . . . 15
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
231 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆))) |
232 | 229, 230,
231 | metrest 23586 |
. . . . . . . . . . . . . 14
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆)))) |
233 | 209, 11, 232 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆)))) |
234 | 228, 233 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))) |
235 | 234 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑋 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))) |
236 | 235 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑋 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))) |
237 | 86 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑧 ∈ 𝑋) |
238 | | simprl 767 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑤 ∈ ℝ+) |
239 | 231 | mopni3 23556 |
. . . . . . . . . 10
⊢ (((((abs
∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑋 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆))) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ (𝑢 <
𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) |
240 | 212, 236,
237, 238, 239 | syl31anc 1371 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∃𝑢 ∈ ℝ+
(𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) |
241 | 208, 240 | reximddv 3203 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∃𝑢 ∈ ℝ+
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) |
242 | 150, 241 | rexlimddv 3219 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) → ∃𝑢 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) |
243 | 242 | rexlimdvaa 3213 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
(∃𝑛 ∈ 𝑍 (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) → ∃𝑢 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟))) |
244 | 98, 243 | syl5 34 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
((∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) → ∃𝑢 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟))) |
245 | 78, 95, 244 | mp2and 695 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) |
246 | 245 | ralrimiva 3107 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑟 ∈ ℝ+ ∃𝑢 ∈ ℝ+
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) |
247 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) |
248 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
249 | 247, 139,
248 | dvlem 24965 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑦 ∈ (𝑋 ∖ {𝑧})) → (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)) ∈ ℂ) |
250 | 249 | fmpttd 6971 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))):(𝑋 ∖ {𝑧})⟶ℂ) |
251 | 139 | ssdifssd 4073 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑋 ∖ {𝑧}) ⊆ ℂ) |
252 | 139, 248 | sseldd 3918 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ ℂ) |
253 | 250, 251,
252 | ellimc3 24948 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝐻‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧) ↔ ((𝐻‘𝑧) ∈ ℂ ∧ ∀𝑟 ∈ ℝ+
∃𝑢 ∈
ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)))) |
254 | 30, 246, 253 | mpbir2and 709 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝐻‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧)) |
255 | 18, 19, 198, 138, 247, 137 | eldv 24967 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑧(𝑆 D 𝐺)(𝐻‘𝑧) ↔ (𝑧 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ (𝐻‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧)))) |
256 | 27, 254, 255 | mpbir2and 709 |
1
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) |