| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | biidd 262 | . . . 4
⊢ (𝑘 = 𝑀 → (𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ↔ 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))) | 
| 2 |  | ulmdv.z | . . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 3 |  | ulmdv.s | . . . . . . 7
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | 
| 4 |  | ulmdv.m | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 5 |  | ulmdv.f | . . . . . . 7
⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) | 
| 6 |  | ulmdv.g | . . . . . . 7
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | 
| 7 |  | ulmdv.l | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) | 
| 8 |  | ulmdv.u | . . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | 
| 9 | 2, 3, 4, 5, 6, 7, 8 | ulmdvlem2 26444 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | 
| 10 |  | recnprss 25939 | . . . . . . . . 9
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) | 
| 11 | 3, 10 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 12 | 11 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑆 ⊆ ℂ) | 
| 13 | 5 | ffvelcdmda 7104 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑋)) | 
| 14 |  | elmapi 8889 | . . . . . . . 8
⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑋) → (𝐹‘𝑘):𝑋⟶ℂ) | 
| 15 | 13, 14 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑋⟶ℂ) | 
| 16 |  | dvbsss 25937 | . . . . . . . 8
⊢ dom
(𝑆 D (𝐹‘𝑘)) ⊆ 𝑆 | 
| 17 | 9, 16 | eqsstrrdi 4029 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ⊆ 𝑆) | 
| 18 |  | eqid 2737 | . . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) | 
| 19 |  | eqid 2737 | . . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 20 | 12, 15, 17, 18, 19 | dvbssntr 25935 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) | 
| 21 | 9, 20 | eqsstrrd 4019 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) | 
| 22 | 21 | ralrimiva 3146 | . . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) | 
| 23 |  | uzid 12893 | . . . . . 6
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) | 
| 24 | 4, 23 | syl 17 | . . . . 5
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) | 
| 25 | 24, 2 | eleqtrrdi 2852 | . . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑍) | 
| 26 | 1, 22, 25 | rspcdva 3623 | . . 3
⊢ (𝜑 → 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) | 
| 27 | 26 | sselda 3983 | . 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) | 
| 28 |  | ulmcl 26424 | . . . . 5
⊢ ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻 → 𝐻:𝑋⟶ℂ) | 
| 29 | 8, 28 | syl 17 | . . . 4
⊢ (𝜑 → 𝐻:𝑋⟶ℂ) | 
| 30 | 29 | ffvelcdmda 7104 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝐻‘𝑧) ∈ ℂ) | 
| 31 |  | breq2 5147 | . . . . . . . 8
⊢ (𝑠 = ((𝑟 / 2) / 2) → ((abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠 ↔ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2))) | 
| 32 | 31 | 2ralbidv 3221 | . . . . . . 7
⊢ (𝑠 = ((𝑟 / 2) / 2) → (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠 ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2))) | 
| 33 | 32 | rexralbidv 3223 | . . . . . 6
⊢ (𝑠 = ((𝑟 / 2) / 2) → (∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠 ↔ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2))) | 
| 34 |  | ulmrel 26421 | . . . . . . . . . 10
⊢ Rel
(⇝𝑢‘𝑋) | 
| 35 |  | releldm 5955 | . . . . . . . . . 10
⊢ ((Rel
(⇝𝑢‘𝑋) ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) ∈ dom
(⇝𝑢‘𝑋)) | 
| 36 | 34, 8, 35 | sylancr 587 | . . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) ∈ dom
(⇝𝑢‘𝑋)) | 
| 37 |  | ulmscl 26422 | . . . . . . . . . . 11
⊢ ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻 → 𝑋 ∈ V) | 
| 38 | 8, 37 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ V) | 
| 39 |  | ovex 7464 | . . . . . . . . . . . . 13
⊢ (𝑆 D (𝐹‘𝑘)) ∈ V | 
| 40 | 39 | rgenw 3065 | . . . . . . . . . . . 12
⊢
∀𝑘 ∈
𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V | 
| 41 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) = (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) | 
| 42 | 41 | fnmpt 6708 | . . . . . . . . . . . 12
⊢
(∀𝑘 ∈
𝑍 (𝑆 D (𝐹‘𝑘)) ∈ V → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) | 
| 43 | 40, 42 | mp1i 13 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍) | 
| 44 |  | ulmf2 26427 | . . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) Fn 𝑍 ∧ (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) | 
| 45 | 43, 8, 44 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) | 
| 46 | 2, 4, 38, 45 | ulmcau2 26439 | . . . . . . . . 9
⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))) ∈ dom
(⇝𝑢‘𝑋) ↔ ∀𝑠 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠)) | 
| 47 | 36, 46 | mpbid 232 | . . . . . . . 8
⊢ (𝜑 → ∀𝑠 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠) | 
| 48 | 2 | uztrn2 12897 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → 𝑛 ∈ 𝑍) | 
| 49 | 48 | ad2ant2lr 748 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → 𝑛 ∈ 𝑍) | 
| 50 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) | 
| 51 | 50 | oveq2d 7447 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑛 → (𝑆 D (𝐹‘𝑘)) = (𝑆 D (𝐹‘𝑛))) | 
| 52 |  | ovex 7464 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑆 D (𝐹‘𝑛)) ∈ V | 
| 53 | 51, 41, 52 | fvmpt 7016 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛) = (𝑆 D (𝐹‘𝑛))) | 
| 54 | 49, 53 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛) = (𝑆 D (𝐹‘𝑛))) | 
| 55 | 54 | fveq1d 6908 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) = ((𝑆 D (𝐹‘𝑛))‘𝑥)) | 
| 56 |  | simprr 773 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → 𝑚 ∈ (ℤ≥‘𝑛)) | 
| 57 | 2 | uztrn2 12897 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) | 
| 58 | 49, 56, 57 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → 𝑚 ∈ 𝑍) | 
| 59 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | 
| 60 | 59 | oveq2d 7447 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → (𝑆 D (𝐹‘𝑘)) = (𝑆 D (𝐹‘𝑚))) | 
| 61 |  | ovex 7464 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑆 D (𝐹‘𝑚)) ∈ V | 
| 62 | 60, 41, 61 | fvmpt 7016 | . . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚) = (𝑆 D (𝐹‘𝑚))) | 
| 63 | 58, 62 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚) = (𝑆 D (𝐹‘𝑚))) | 
| 64 | 63 | fveq1d 6908 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥) = ((𝑆 D (𝐹‘𝑚))‘𝑥)) | 
| 65 | 55, 64 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → ((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥)) = (((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) | 
| 66 | 65 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) = (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥)))) | 
| 67 | 66 | breq1d 5153 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → ((abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) | 
| 68 | 67 | ralbidv 3178 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑗) ∧ 𝑚 ∈ (ℤ≥‘𝑛))) → (∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) | 
| 69 | 68 | 2ralbidva 3219 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) | 
| 70 | 69 | rexbidva 3177 | . . . . . . . . 9
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) | 
| 71 | 70 | ralbidv 3178 | . . . . . . . 8
⊢ (𝜑 → (∀𝑠 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘((((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑥) − (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑚)‘𝑥))) < 𝑠 ↔ ∀𝑠 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠)) | 
| 72 | 47, 71 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → ∀𝑠 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠) | 
| 73 | 72 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
∀𝑠 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < 𝑠) | 
| 74 |  | rphalfcl 13062 | . . . . . . . 8
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ+) | 
| 75 | 74 | adantl 481 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈
ℝ+) | 
| 76 |  | rphalfcl 13062 | . . . . . . 7
⊢ ((𝑟 / 2) ∈ ℝ+
→ ((𝑟 / 2) / 2) ∈
ℝ+) | 
| 77 | 75, 76 | syl 17 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) ∈
ℝ+) | 
| 78 | 33, 73, 77 | rspcdva 3623 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2)) | 
| 79 | 4 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈
ℤ) | 
| 80 | 51 | fveq1d 6908 | . . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝑆 D (𝐹‘𝑘))‘𝑧) = ((𝑆 D (𝐹‘𝑛))‘𝑧)) | 
| 81 |  | eqid 2737 | . . . . . . . 8
⊢ (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) = (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) | 
| 82 |  | fvex 6919 | . . . . . . . 8
⊢ ((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ V | 
| 83 | 80, 81, 82 | fvmpt 7016 | . . . . . . 7
⊢ (𝑛 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧))‘𝑛) = ((𝑆 D (𝐹‘𝑛))‘𝑧)) | 
| 84 | 83 | adantl 481 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧))‘𝑛) = ((𝑆 D (𝐹‘𝑛))‘𝑧)) | 
| 85 | 45 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘))):𝑍⟶(ℂ ↑m 𝑋)) | 
| 86 |  | simplr 769 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑧 ∈ 𝑋) | 
| 87 | 2 | fvexi 6920 | . . . . . . . . 9
⊢ 𝑍 ∈ V | 
| 88 | 87 | mptex 7243 | . . . . . . . 8
⊢ (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) ∈ V | 
| 89 | 88 | a1i 11 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) ∈ V) | 
| 90 | 53 | adantl 481 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛) = (𝑆 D (𝐹‘𝑛))) | 
| 91 | 90 | fveq1d 6908 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑧) = ((𝑆 D (𝐹‘𝑛))‘𝑧)) | 
| 92 | 91, 84 | eqtr4d 2780 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛)‘𝑧) = ((𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧))‘𝑛)) | 
| 93 | 8 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) | 
| 94 | 2, 79, 85, 86, 89, 92, 93 | ulmclm 26430 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑘 ∈ 𝑍 ↦ ((𝑆 D (𝐹‘𝑘))‘𝑧)) ⇝ (𝐻‘𝑧)) | 
| 95 | 2, 79, 75, 84, 94 | climi2 15547 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) | 
| 96 | 2 | rexanuz2 15388 | . . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑛 ∈
(ℤ≥‘𝑗)(∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ↔ (∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) | 
| 97 | 2 | r19.2uz 15390 | . . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑛 ∈
(ℤ≥‘𝑗)(∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) → ∃𝑛 ∈ 𝑍 (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) | 
| 98 | 96, 97 | sylbir 235 | . . . . . 6
⊢
((∃𝑗 ∈
𝑍 ∀𝑛 ∈
(ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) → ∃𝑛 ∈ 𝑍 (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) | 
| 99 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑛)‘𝑦) = ((𝐹‘𝑛)‘𝑣)) | 
| 100 | 99 | oveq1d 7446 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑣 → (((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) = (((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧))) | 
| 101 |  | oveq1 7438 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑣 → (𝑦 − 𝑧) = (𝑣 − 𝑧)) | 
| 102 | 100, 101 | oveq12d 7449 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑣 → ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)) = ((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧))) | 
| 103 |  | eqid 2737 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) = (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) | 
| 104 |  | ovex 7464 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) ∈ V | 
| 105 | 102, 103,
104 | fvmpt 7016 | . . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) = ((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧))) | 
| 106 | 105 | fvoveq1d 7453 | . . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) = (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧)))) | 
| 107 |  | id 22 | . . . . . . . . . . . . . 14
⊢ (𝑠 = ((𝑟 / 2) / 2) → 𝑠 = ((𝑟 / 2) / 2)) | 
| 108 | 106, 107 | breqan12rd 5160 | . . . . . . . . . . . . 13
⊢ ((𝑠 = ((𝑟 / 2) / 2) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → ((abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠 ↔ (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) | 
| 109 | 108 | imbi2d 340 | . . . . . . . . . . . 12
⊢ ((𝑠 = ((𝑟 / 2) / 2) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠) ↔ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) | 
| 110 | 109 | ralbidva 3176 | . . . . . . . . . . 11
⊢ (𝑠 = ((𝑟 / 2) / 2) → (∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠) ↔ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) | 
| 111 | 110 | rexbidv 3179 | . . . . . . . . . 10
⊢ (𝑠 = ((𝑟 / 2) / 2) → (∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠) ↔ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) | 
| 112 |  | simpllr 776 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑧 ∈ 𝑋) | 
| 113 | 85 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))‘𝑛) ∈ (ℂ ↑m 𝑋)) | 
| 114 | 90, 113 | eqeltrrd 2842 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑆 D (𝐹‘𝑛)) ∈ (ℂ ↑m 𝑋)) | 
| 115 |  | elmapi 8889 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑆 D (𝐹‘𝑛)) ∈ (ℂ ↑m 𝑋) → (𝑆 D (𝐹‘𝑛)):𝑋⟶ℂ) | 
| 116 |  | fdm 6745 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑆 D (𝐹‘𝑛)):𝑋⟶ℂ → dom (𝑆 D (𝐹‘𝑛)) = 𝑋) | 
| 117 | 114, 115,
116 | 3syl 18 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑛)) = 𝑋) | 
| 118 | 112, 117 | eleqtrrd 2844 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑧 ∈ dom (𝑆 D (𝐹‘𝑛))) | 
| 119 | 3 | ad3antrrr 730 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ {ℝ, ℂ}) | 
| 120 |  | dvfg 25941 | . . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D (𝐹‘𝑛)):dom (𝑆 D (𝐹‘𝑛))⟶ℂ) | 
| 121 |  | ffun 6739 | . . . . . . . . . . . . . . . 16
⊢ ((𝑆 D (𝐹‘𝑛)):dom (𝑆 D (𝐹‘𝑛))⟶ℂ → Fun (𝑆 D (𝐹‘𝑛))) | 
| 122 |  | funfvbrb 7071 | . . . . . . . . . . . . . . . 16
⊢ (Fun
(𝑆 D (𝐹‘𝑛)) → (𝑧 ∈ dom (𝑆 D (𝐹‘𝑛)) ↔ 𝑧(𝑆 D (𝐹‘𝑛))((𝑆 D (𝐹‘𝑛))‘𝑧))) | 
| 123 | 119, 120,
121, 122 | 4syl 19 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑧 ∈ dom (𝑆 D (𝐹‘𝑛)) ↔ 𝑧(𝑆 D (𝐹‘𝑛))((𝑆 D (𝐹‘𝑛))‘𝑧))) | 
| 124 | 118, 123 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑧(𝑆 D (𝐹‘𝑛))((𝑆 D (𝐹‘𝑛))‘𝑧)) | 
| 125 | 119, 10 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑆 ⊆ ℂ) | 
| 126 | 5 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) | 
| 127 | 126 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (ℂ ↑m 𝑋)) | 
| 128 |  | elmapi 8889 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) ∈ (ℂ ↑m 𝑋) → (𝐹‘𝑛):𝑋⟶ℂ) | 
| 129 | 127, 128 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):𝑋⟶ℂ) | 
| 130 |  | biidd 262 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑀 → (𝑋 ⊆ 𝑆 ↔ 𝑋 ⊆ 𝑆)) | 
| 131 | 17 | ralrimiva 3146 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝑋 ⊆ 𝑆) | 
| 132 | 130, 131,
25 | rspcdva 3623 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ⊆ 𝑆) | 
| 133 | 132 | ad3antrrr 730 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑋 ⊆ 𝑆) | 
| 134 | 18, 19, 103, 125, 129, 133 | eldv 25933 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑧(𝑆 D (𝐹‘𝑛))((𝑆 D (𝐹‘𝑛))‘𝑧) ↔ (𝑧 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ ((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧)))) | 
| 135 | 124, 134 | mpbid 232 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑧 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ ((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧))) | 
| 136 | 135 | simprd 495 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧)) | 
| 137 | 132 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑋 ⊆ 𝑆) | 
| 138 | 11 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑆 ⊆ ℂ) | 
| 139 | 137, 138 | sstrd 3994 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑋 ⊆ ℂ) | 
| 140 | 139 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑋 ⊆ ℂ) | 
| 141 | 129, 140,
112 | dvlem 25931 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) ∧ 𝑦 ∈ (𝑋 ∖ {𝑧})) → ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)) ∈ ℂ) | 
| 142 | 141 | fmpttd 7135 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))):(𝑋 ∖ {𝑧})⟶ℂ) | 
| 143 | 140 | ssdifssd 4147 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (𝑋 ∖ {𝑧}) ⊆ ℂ) | 
| 144 | 140, 112 | sseldd 3984 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → 𝑧 ∈ ℂ) | 
| 145 | 142, 143,
144 | ellimc3 25914 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧) ↔ (((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠)))) | 
| 146 | 136, 145 | mpbid 232 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (((𝑆 D (𝐹‘𝑛))‘𝑧) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+
∃𝑤 ∈
ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠))) | 
| 147 | 146 | simprd 495 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ∀𝑠 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ ((((𝐹‘𝑛)‘𝑦) − ((𝐹‘𝑛)‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < 𝑠)) | 
| 148 | 77 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ((𝑟 / 2) / 2) ∈
ℝ+) | 
| 149 | 111, 147,
148 | rspcdva 3623 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) | 
| 150 | 149 | adantrr 717 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) | 
| 151 |  | anass 468 | . . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ↔ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ ((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈
ℝ+))) | 
| 152 |  | df-3an 1089 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))) ↔ ((𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))))) | 
| 153 |  | anass 468 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ↔ (𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈
ℝ+))) | 
| 154 | 7 | ralrimiva 3146 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) | 
| 155 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑠 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑘)‘𝑠)) | 
| 156 | 155 | mpteq2dv 5244 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = 𝑠 → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) = (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑠))) | 
| 157 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = 𝑠 → (𝐺‘𝑧) = (𝐺‘𝑠)) | 
| 158 | 156, 157 | breq12d 5156 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑠 → ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧) ↔ (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑠)) ⇝ (𝐺‘𝑠))) | 
| 159 | 158 | rspccva 3621 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑧 ∈
𝑋 (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧) ∧ 𝑠 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑠)) ⇝ (𝐺‘𝑠)) | 
| 160 | 154, 159 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑠)) ⇝ (𝐺‘𝑠)) | 
| 161 |  | simprll 779 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑧 ∈ 𝑋) | 
| 162 |  | simprlr 780 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑟 ∈ ℝ+) | 
| 163 |  | simprr3 1224 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))) | 
| 164 |  | simplll 775 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → 𝑢 ∈ ℝ+) | 
| 165 | 163, 164 | syl 17 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑢 ∈ ℝ+) | 
| 166 |  | simplr 769 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → 𝑤 ∈ ℝ+) | 
| 167 | 163, 166 | syl 17 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑤 ∈ ℝ+) | 
| 168 |  | simpllr 776 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) | 
| 169 | 163, 168 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) | 
| 170 | 169 | simpld 494 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑢 < 𝑤) | 
| 171 | 169 | simprd 495 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋) | 
| 172 |  | simpr3 1197 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)) | 
| 173 | 163, 172 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)) | 
| 174 | 173 | simprd 495 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (abs‘(𝑣 − 𝑧)) < 𝑢) | 
| 175 |  | simprr1 1222 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑛 ∈ 𝑍) | 
| 176 |  | simprr2 1223 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) | 
| 177 | 176 | simpld 494 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → ∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2)) | 
| 178 | 176 | simprd 495 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) | 
| 179 |  | simpr1 1195 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → 𝑣 ∈ (𝑋 ∖ {𝑧})) | 
| 180 | 163, 179 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑣 ∈ (𝑋 ∖ {𝑧})) | 
| 181 | 180 | eldifad 3963 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑣 ∈ 𝑋) | 
| 182 | 173 | simpld 494 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → 𝑣 ≠ 𝑧) | 
| 183 |  | simpr2 1196 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑢 ∈ ℝ+
∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) | 
| 184 | 163, 183 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) | 
| 185 | 182, 184 | mpand 695 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → ((abs‘(𝑣 − 𝑧)) < 𝑤 → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2))) | 
| 186 | 2, 3, 4, 5, 6, 160, 8, 161, 162, 165, 167, 170, 171, 174, 175, 177, 178, 181, 182, 185 | ulmdvlem1 26443 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) | 
| 187 | 186 | anassrs 467 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) | 
| 188 | 153, 187 | sylanb 581 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) | 
| 189 | 152, 188 | sylan2br 595 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) | 
| 190 | 189 | anassrs 467 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢)))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) | 
| 191 | 190 | anassrs 467 | . . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ ((𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) ∧ 𝑤 ∈ ℝ+)) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) | 
| 192 | 151, 191 | sylanb 581 | . . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ (𝑣 ∈ (𝑋 ∖ {𝑧}) ∧ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) ∧ (𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢))) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟) | 
| 193 | 192 | 3exp2 1355 | . . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) → (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟)))) | 
| 194 | 193 | imp 406 | . . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟))) | 
| 195 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑣 → (𝐺‘𝑦) = (𝐺‘𝑣)) | 
| 196 | 195 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑣 → ((𝐺‘𝑦) − (𝐺‘𝑧)) = ((𝐺‘𝑣) − (𝐺‘𝑧))) | 
| 197 | 196, 101 | oveq12d 7449 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑣 → (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)) = (((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧))) | 
| 198 |  | eqid 2737 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) = (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) | 
| 199 |  | ovex 7464 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) ∈ V | 
| 200 | 197, 198,
199 | fvmpt 7016 | . . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) = (((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧))) | 
| 201 | 200 | fvoveq1d 7453 | . . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) = (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧)))) | 
| 202 | 201 | breq1d 5153 | . . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → ((abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟 ↔ (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟)) | 
| 203 | 202 | imbi2d 340 | . . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝑋 ∖ {𝑧}) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟) ↔ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟))) | 
| 204 | 203 | adantl 481 | . . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟) ↔ ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘((((𝐺‘𝑣) − (𝐺‘𝑧)) / (𝑣 − 𝑧)) − (𝐻‘𝑧))) < 𝑟))) | 
| 205 | 194, 204 | sylibrd 259 | . . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ (𝑋 ∖ {𝑧})) → (((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟))) | 
| 206 | 205 | ralimdva 3167 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ 𝑤 ∈ ℝ+) →
(∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟))) | 
| 207 | 206 | impr 454 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) | 
| 208 | 207 | an32s 652 | . . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) ∧ (𝑢 ∈ ℝ+ ∧ (𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋))) → ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) | 
| 209 |  | cnxmet 24793 | . . . . . . . . . . . 12
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) | 
| 210 |  | xmetres2 24371 | . . . . . . . . . . . 12
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘
− ) ↾ (𝑆
× 𝑆)) ∈
(∞Met‘𝑆)) | 
| 211 | 209, 138,
210 | sylancr 587 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs ∘ − ) ↾
(𝑆 × 𝑆)) ∈
(∞Met‘𝑆)) | 
| 212 | 211 | ad3antrrr 730 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ((abs ∘ − )
↾ (𝑆 × 𝑆)) ∈
(∞Met‘𝑆)) | 
| 213 | 19 | cnfldtop 24804 | . . . . . . . . . . . . . . . . 17
⊢
(TopOpen‘ℂfld) ∈ Top | 
| 214 |  | resttop 23168 | . . . . . . . . . . . . . . . . 17
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ})
→ ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) | 
| 215 | 213, 3, 214 | sylancr 587 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) | 
| 216 | 19 | cnfldtopon 24803 | . . . . . . . . . . . . . . . . . . 19
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) | 
| 217 |  | resttopon 23169 | . . . . . . . . . . . . . . . . . . 19
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | 
| 218 | 216, 11, 217 | sylancr 587 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | 
| 219 |  | toponuni 22920 | . . . . . . . . . . . . . . . . . 18
⊢
(((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 220 | 218, 219 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 221 | 132, 220 | sseqtrd 4020 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ⊆ ∪
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 222 |  | eqid 2737 | . . . . . . . . . . . . . . . . 17
⊢ ∪ ((TopOpen‘ℂfld)
↾t 𝑆) =
∪ ((TopOpen‘ℂfld)
↾t 𝑆) | 
| 223 | 222 | ntrss2 23065 | . . . . . . . . . . . . . . . 16
⊢
((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ ((TopOpen‘ℂfld)
↾t 𝑆))
→ ((int‘((TopOpen‘ℂfld) ↾t
𝑆))‘𝑋) ⊆ 𝑋) | 
| 224 | 215, 221,
223 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) | 
| 225 | 224, 26 | eqssd 4001 | . . . . . . . . . . . . . 14
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋) | 
| 226 | 222 | isopn3 23074 | . . . . . . . . . . . . . . 15
⊢
((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ ((TopOpen‘ℂfld)
↾t 𝑆))
→ (𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆) ↔
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)) | 
| 227 | 215, 221,
226 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆) ↔
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋)) | 
| 228 | 225, 227 | mpbird 257 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) | 
| 229 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢ ((abs
∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) | 
| 230 | 19 | cnfldtopn 24802 | . . . . . . . . . . . . . . 15
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) | 
| 231 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢
(MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆))) | 
| 232 | 229, 230,
231 | metrest 24537 | . . . . . . . . . . . . . 14
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆)))) | 
| 233 | 209, 11, 232 | sylancr 587 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑆) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆)))) | 
| 234 | 228, 233 | eleqtrd 2843 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))) | 
| 235 | 234 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑋 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))) | 
| 236 | 235 | ad3antrrr 730 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑋 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))) | 
| 237 | 86 | ad2antrr 726 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑧 ∈ 𝑋) | 
| 238 |  | simprl 771 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → 𝑤 ∈ ℝ+) | 
| 239 | 231 | mopni3 24507 | . . . . . . . . . 10
⊢ (((((abs
∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑋 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆))) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ (𝑢 <
𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) | 
| 240 | 212, 236,
237, 238, 239 | syl31anc 1375 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∃𝑢 ∈ ℝ+
(𝑢 < 𝑤 ∧ (𝑧(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑢) ⊆ 𝑋)) | 
| 241 | 208, 240 | reximddv 3171 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) ∧ (𝑤 ∈ ℝ+ ∧
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑤) → (abs‘(((((𝐹‘𝑛)‘𝑣) − ((𝐹‘𝑛)‘𝑧)) / (𝑣 − 𝑧)) − ((𝑆 D (𝐹‘𝑛))‘𝑧))) < ((𝑟 / 2) / 2)))) → ∃𝑢 ∈ ℝ+
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) | 
| 242 | 150, 241 | rexlimddv 3161 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)))) → ∃𝑢 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) | 
| 243 | 242 | rexlimdvaa 3156 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
(∃𝑛 ∈ 𝑍 (∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) → ∃𝑢 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟))) | 
| 244 | 98, 243 | syl5 34 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
((∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑛)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑛))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑟 / 2) / 2) ∧ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(((𝑆 D (𝐹‘𝑛))‘𝑧) − (𝐻‘𝑧))) < (𝑟 / 2)) → ∃𝑢 ∈ ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟))) | 
| 245 | 78, 95, 244 | mp2and 699 | . . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) | 
| 246 | 245 | ralrimiva 3146 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑟 ∈ ℝ+ ∃𝑢 ∈ ℝ+
∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)) | 
| 247 | 6 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝐺:𝑋⟶ℂ) | 
| 248 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) | 
| 249 | 247, 139,
248 | dvlem 25931 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑦 ∈ (𝑋 ∖ {𝑧})) → (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)) ∈ ℂ) | 
| 250 | 249 | fmpttd 7135 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))):(𝑋 ∖ {𝑧})⟶ℂ) | 
| 251 | 139 | ssdifssd 4147 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑋 ∖ {𝑧}) ⊆ ℂ) | 
| 252 | 139, 248 | sseldd 3984 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ ℂ) | 
| 253 | 250, 251,
252 | ellimc3 25914 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝐻‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧) ↔ ((𝐻‘𝑧) ∈ ℂ ∧ ∀𝑟 ∈ ℝ+
∃𝑢 ∈
ℝ+ ∀𝑣 ∈ (𝑋 ∖ {𝑧})((𝑣 ≠ 𝑧 ∧ (abs‘(𝑣 − 𝑧)) < 𝑢) → (abs‘(((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧)))‘𝑣) − (𝐻‘𝑧))) < 𝑟)))) | 
| 254 | 30, 246, 253 | mpbir2and 713 | . 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝐻‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧)) | 
| 255 | 18, 19, 198, 138, 247, 137 | eldv 25933 | . 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑧(𝑆 D 𝐺)(𝐻‘𝑧) ↔ (𝑧 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ (𝐻‘𝑧) ∈ ((𝑦 ∈ (𝑋 ∖ {𝑧}) ↦ (((𝐺‘𝑦) − (𝐺‘𝑧)) / (𝑦 − 𝑧))) limℂ 𝑧)))) | 
| 256 | 27, 254, 255 | mpbir2and 713 | 1
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) |