MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivdiv Structured version   Visualization version   GIF version

Theorem ledivdiv 12136
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006.)
Assertion
Ref Expression
ledivdiv ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))

Proof of Theorem ledivdiv
StepHypRef Expression
1 simpl 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
2 gt0ne0 11711 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
31, 2jca 510 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
4 redivcl 11966 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
543expb 1117 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
63, 5sylan2 591 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
76adantlr 713 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
8 divgt0 12115 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
97, 8jca 510 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)))
10 simpl 481 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ∈ ℝ)
11 gt0ne0 11711 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ≠ 0)
1210, 11jca 510 . . . . . 6 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → (𝐷 ∈ ℝ ∧ 𝐷 ≠ 0))
13 redivcl 11966 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0) → (𝐶 / 𝐷) ∈ ℝ)
14133expb 1117 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 𝐷 ≠ 0)) → (𝐶 / 𝐷) ∈ ℝ)
1512, 14sylan2 591 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 / 𝐷) ∈ ℝ)
1615adantlr 713 . . . 4 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 / 𝐷) ∈ ℝ)
17 divgt0 12115 . . . 4 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → 0 < (𝐶 / 𝐷))
1816, 17jca 510 . . 3 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝐶 / 𝐷) ∈ ℝ ∧ 0 < (𝐶 / 𝐷)))
19 lerec 12130 . . 3 ((((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)) ∧ ((𝐶 / 𝐷) ∈ ℝ ∧ 0 < (𝐶 / 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵))))
209, 18, 19syl2an 594 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵))))
21 recn 11230 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
2221adantr 479 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℂ)
23 gt0ne0 11711 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
2422, 23jca 510 . . . 4 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
25 recn 11230 . . . . . 6 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
2625adantr 479 . . . . 5 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ∈ ℂ)
2726, 11jca 510 . . . 4 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
28 recdiv 11953 . . . 4 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
2924, 27, 28syl2an 594 . . 3 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
30 recn 11230 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3130adantr 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
32 gt0ne0 11711 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
3331, 32jca 510 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
34 recn 11230 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3534adantr 479 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
3635, 2jca 510 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
37 recdiv 11953 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
3833, 36, 37syl2an 594 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
3929, 38breqan12rd 5166 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵)) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
4020, 39bitrd 278 1 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   < clt 11280  cle 11281   / cdiv 11903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904
This theorem is referenced by:  ledivdivd  13076
  Copyright terms: Public domain W3C validator