MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivdiv Structured version   Visualization version   GIF version

Theorem ledivdiv 11518
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006.)
Assertion
Ref Expression
ledivdiv ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))

Proof of Theorem ledivdiv
StepHypRef Expression
1 simpl 486 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
2 gt0ne0 11094 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
31, 2jca 515 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
4 redivcl 11348 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
543expb 1117 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
63, 5sylan2 595 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
76adantlr 714 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
8 divgt0 11497 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
97, 8jca 515 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)))
10 simpl 486 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ∈ ℝ)
11 gt0ne0 11094 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ≠ 0)
1210, 11jca 515 . . . . . 6 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → (𝐷 ∈ ℝ ∧ 𝐷 ≠ 0))
13 redivcl 11348 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0) → (𝐶 / 𝐷) ∈ ℝ)
14133expb 1117 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 𝐷 ≠ 0)) → (𝐶 / 𝐷) ∈ ℝ)
1512, 14sylan2 595 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 / 𝐷) ∈ ℝ)
1615adantlr 714 . . . 4 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 / 𝐷) ∈ ℝ)
17 divgt0 11497 . . . 4 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → 0 < (𝐶 / 𝐷))
1816, 17jca 515 . . 3 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝐶 / 𝐷) ∈ ℝ ∧ 0 < (𝐶 / 𝐷)))
19 lerec 11512 . . 3 ((((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)) ∧ ((𝐶 / 𝐷) ∈ ℝ ∧ 0 < (𝐶 / 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵))))
209, 18, 19syl2an 598 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵))))
21 recn 10616 . . . . . 6 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
2221adantr 484 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℂ)
23 gt0ne0 11094 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
2422, 23jca 515 . . . 4 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
25 recn 10616 . . . . . 6 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
2625adantr 484 . . . . 5 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 𝐷 ∈ ℂ)
2726, 11jca 515 . . . 4 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
28 recdiv 11335 . . . 4 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
2924, 27, 28syl2an 598 . . 3 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (1 / (𝐶 / 𝐷)) = (𝐷 / 𝐶))
30 recn 10616 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3130adantr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
32 gt0ne0 11094 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
3331, 32jca 515 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
34 recn 10616 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3534adantr 484 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
3635, 2jca 515 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
37 recdiv 11335 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
3833, 36, 37syl2an 598 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
3929, 38breqan12rd 5047 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((1 / (𝐶 / 𝐷)) ≤ (1 / (𝐴 / 𝐵)) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
4020, 39bitrd 282 1 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   < clt 10664  cle 10665   / cdiv 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287
This theorem is referenced by:  ledivdivd  12444
  Copyright terms: Public domain W3C validator