Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Structured version   Visualization version   GIF version

Theorem areacirclem4 37712
Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem4
StepHypRef Expression
1 rpcn 12969 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
21sqcld 14116 . . 3 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
3 rpre 12967 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
43renegcld 11612 . . . . 5 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
5 iccssre 13397 . . . . 5 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 3, 5syl2anc 584 . . . 4 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
7 ax-resscn 11132 . . . 4 ℝ ⊆ ℂ
86, 7sstrdi 3962 . . 3 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℂ)
9 ssid 3972 . . . 4 ℂ ⊆ ℂ
109a1i 11 . . 3 (𝑅 ∈ ℝ+ → ℂ ⊆ ℂ)
11 cncfmptc 24812 . . 3 (((𝑅↑2) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
122, 8, 10, 11syl3anc 1373 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
13 eqid 2730 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413addcn 24761 . . . 4 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1514a1i 11 . . 3 (𝑅 ∈ ℝ+ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
168sselda 3949 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℂ)
171adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
18 rpne0 12975 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
1918adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
2016, 17, 19divcld 11965 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℂ)
21 asinval 26799 . . . . . . 7 ((𝑡 / 𝑅) ∈ ℂ → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
2220, 21syl 17 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
23 ax-icn 11134 . . . . . . . . . . . 12 i ∈ ℂ
2423a1i 11 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → i ∈ ℂ)
2524, 20mulcld 11201 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) ∈ ℂ)
26 1cnd 11176 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
2720sqcld 14116 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℂ)
2826, 27subcld 11540 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℂ)
2928sqrtcld 15413 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℂ)
3025, 29addcld 11200 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
31 0lt1 11707 . . . . . . . . . . . . . . 15 0 < 1
32 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 𝑡 = 0)
3332oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = (0 / 𝑅))
341, 18div0d 11964 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (0 / 𝑅) = 0)
35343ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 / 𝑅) = 0)
3633, 35eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = 0)
3736oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = (i · 0))
38 it0e0 12412 . . . . . . . . . . . . . . . . . . . 20 (i · 0) = 0
3937, 38eqtrdi 2781 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = 0)
4036oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((𝑡 / 𝑅)↑2) = (0↑2))
4140oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (1 − ((𝑡 / 𝑅)↑2)) = (1 − (0↑2)))
4241fveq2d 6865 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = (√‘(1 − (0↑2))))
43 sq0 14164 . . . . . . . . . . . . . . . . . . . . . . . 24 (0↑2) = 0
4443oveq2i 7401 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − (0↑2)) = (1 − 0)
45 1m0e1 12309 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − 0) = 1
4644, 45eqtri 2753 . . . . . . . . . . . . . . . . . . . . . 22 (1 − (0↑2)) = 1
4746fveq2i 6864 . . . . . . . . . . . . . . . . . . . . 21 (√‘(1 − (0↑2))) = (√‘1)
48 sqrt1 15244 . . . . . . . . . . . . . . . . . . . . 21 (√‘1) = 1
4947, 48eqtri 2753 . . . . . . . . . . . . . . . . . . . 20 (√‘(1 − (0↑2))) = 1
5042, 49eqtrdi 2781 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = 1)
5139, 50oveq12d 7408 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (0 + 1))
52 0p1e1 12310 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
5351, 52eqtrdi 2781 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = 1)
5453breq2d 5122 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ 0 < 1))
55 0red 11184 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 0 ∈ ℝ)
56 1red 11182 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 1 ∈ ℝ)
5753, 56eqeltrd 2829 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
5855, 57ltnled 11328 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
5954, 58bitr3d 281 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < 1 ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
6031, 59mpbii 233 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
61603expa 1118 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
6261olcd 874 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
63 inelr 12183 . . . . . . . . . . . . . 14 ¬ i ∈ ℝ
6425, 29pncand 11541 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
65643adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
6665oveq1d 7405 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)))
6723a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i ∈ ℂ)
68203adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑡 / 𝑅) ∈ ℂ)
6913ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℂ)
70163adant3 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℂ)
71 simp3 1138 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ≠ 0)
7269, 70, 71divcld 11965 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℂ)
7367, 68, 72mulassd 11204 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
7466, 73eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
75183ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ≠ 0)
7670, 69, 71, 75divcan6d 11984 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((𝑡 / 𝑅) · (𝑅 / 𝑡)) = 1)
7776oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))) = (i · 1))
7867mulridd 11198 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · 1) = i)
7974, 77, 783eqtrrd 2770 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
8079adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
81 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
82 1red 11182 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℝ)
836sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
843adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℝ)
8583, 84, 19redivcld 12017 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℝ)
8685resqcld 14097 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
8782, 86resubcld 11613 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℝ)
88 elicc2 13379 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
894, 3, 88syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
90 1red 11182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 1 ∈ ℝ)
91 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
923adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
9318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ≠ 0)
9491, 92, 93redivcld 12017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / 𝑅) ∈ ℝ)
9594resqcld 14097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
9690, 95subge0d 11775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (0 ≤ (1 − ((𝑡 / 𝑅)↑2)) ↔ ((𝑡 / 𝑅)↑2) ≤ 1))
97 recn 11165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
9897adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
991adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℂ)
10098, 99, 93sqdivd 14131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
101100breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡 / 𝑅)↑2) ≤ 1 ↔ ((𝑡↑2) / (𝑅↑2)) ≤ 1))
102 resqcl 14096 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
103102adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1043resqcld 14097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
105 rpgt0 12971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → 0 < 𝑅)
106 0red 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ∈ ℝ)
107 0le0 12294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 ≤ 0
108107a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 0)
109 rpge0 12972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
110106, 3, 108, 109lt2sqd 14228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ (0↑2) < (𝑅↑2)))
11143a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → (0↑2) = 0)
112111breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → ((0↑2) < (𝑅↑2) ↔ 0 < (𝑅↑2)))
113110, 112bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ 0 < (𝑅↑2)))
114105, 113mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → 0 < (𝑅↑2))
115104, 114elrpd 12999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ+)
116115adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ+)
117103, 90, 116ledivmuld 13055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (𝑡↑2) ≤ ((𝑅↑2) · 1)))
118 absresq 15275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
119118eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) = ((abs‘𝑡)↑2))
1202mulridd 11198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → ((𝑅↑2) · 1) = (𝑅↑2))
121119, 120breqan12rd 5127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12297abscld 15412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
123122adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
12497absge0d 15420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
125124adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
126109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
127123, 92, 125, 126le2sqd 14229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12891, 92absled 15406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
129121, 127, 1283bitr2d 307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ (-𝑅𝑡𝑡𝑅)))
130117, 129bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (-𝑅𝑡𝑡𝑅)))
13196, 101, 1303bitrrd 306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
132131biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
133132exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))))
1341333impd 1349 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
13589, 134sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
136135imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2)))
13787, 136resqrtcld 15391 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
1381373adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
139138adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
14081, 139resubcld 11613 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
14133ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℝ)
142833adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℝ)
143141, 142, 71redivcld 12017 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℝ)
144143adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (𝑅 / 𝑡) ∈ ℝ)
145140, 144remulcld 11211 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) ∈ ℝ)
14680, 145eqeltrd 2829 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i ∈ ℝ)
147146ex 412 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
1481473expa 1118 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
14963, 148mtoi 199 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
150149orcd 873 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
15162, 150pm2.61dane 3013 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
152 ianor 983 . . . . . . . . . . 11 (¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) ↔ (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
153151, 152sylibr 234 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
154 mnfxr 11238 . . . . . . . . . . . 12 -∞ ∈ ℝ*
155 0re 11183 . . . . . . . . . . . 12 0 ∈ ℝ
156 elioc2 13377 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)))
157154, 155, 156mp2an 692 . . . . . . . . . . 11 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
158 3simpb 1149 . . . . . . . . . . 11 ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
159157, 158sylbi 217 . . . . . . . . . 10 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
160153, 159nsyl 140 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0))
16130, 160eldifd 3928 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)))
162 fvres 6880 . . . . . . . 8 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
163161, 162syl 17 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
164163oveq2d 7406 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
16522, 164eqtr4d 2768 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
166165mpteq2dva 5203 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))))
167 negicn 11429 . . . . . . 7 -i ∈ ℂ
168167a1i 11 . . . . . 6 (𝑅 ∈ ℝ+ → -i ∈ ℂ)
169 cncfmptc 24812 . . . . . 6 ((-i ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
170168, 8, 10, 169syl3anc 1373 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
17113cnfldtopon 24677 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
172171a1i 11 . . . . . . . 8 (𝑅 ∈ ℝ+ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
173 resttopon 23055 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
174172, 8, 173syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ+ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
175161fmpttd 7090 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0)))
176 difssd 4103 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (ℂ ∖ (-∞(,]0)) ⊆ ℂ)
17716, 17, 19divrec2d 11969 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = ((1 / 𝑅) · 𝑡))
178177oveq2d 7406 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = (i · ((1 / 𝑅) · 𝑡)))
1791, 18reccld 11958 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 / 𝑅) ∈ ℂ)
180179adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 / 𝑅) ∈ ℂ)
18124, 180, 16mulassd 11204 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (1 / 𝑅)) · 𝑡) = (i · ((1 / 𝑅) · 𝑡)))
182178, 181eqtr4d 2768 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = ((i · (1 / 𝑅)) · 𝑡))
183182mpteq2dva 5203 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)))
18423a1i 11 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → i ∈ ℂ)
185184, 179mulcld 11201 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (i · (1 / 𝑅)) ∈ ℂ)
186 cncfmptc 24812 . . . . . . . . . . . . . 14 (((i · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
187185, 8, 10, 186syl3anc 1373 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
188 cncfmptid 24813 . . . . . . . . . . . . . 14 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
1898, 10, 188syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
190187, 189mulcncf 25353 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
191183, 190eqeltrd 2829 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
19217, 29mulcld 11201 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
193192, 17, 19divrec2d 11969 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
19429, 17, 19divcan3d 11970 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = (√‘(1 − ((𝑡 / 𝑅)↑2))))
195104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
1963sqge0d 14109 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅↑2))
197196adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (𝑅↑2))
198195, 197, 87, 136sqrtmuld 15398 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
1992adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
200199, 26, 27subdid 11641 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))))
201199mulridd 11198 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · 1) = (𝑅↑2))
20216, 17, 19sqdivd 14131 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
203202oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))))
20416sqcld 14116 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℂ)
205 sqne0 14095 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℂ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
2061, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
20718, 206mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ+ → (𝑅↑2) ≠ 0)
208207adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ≠ 0)
209204, 199, 208divcan2d 11967 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))) = (𝑡↑2))
210203, 209eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = (𝑡↑2))
211201, 210oveq12d 7408 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
212200, 211eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
213212fveq2d 6865 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
214109adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ 𝑅)
21584, 214sqrtsqd 15393 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(𝑅↑2)) = 𝑅)
216215oveq1d 7405 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
217198, 213, 2163eqtr3rd 2774 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
218217oveq2d 7406 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
219193, 194, 2183eqtr3d 2773 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
220219mpteq2dva 5203 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
221 cncfmptc 24812 . . . . . . . . . . . . . 14 (((1 / 𝑅) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
222179, 8, 10, 221syl3anc 1373 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
223 areacirclem2 37710 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
2243, 109, 223syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
225222, 224mulcncf 25353 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
226220, 225eqeltrd 2829 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
22713, 15, 191, 226cncfmpt2f 24815 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
228 cncfcdm 24798 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
229176, 227, 228syl2anc 584 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
230175, 229mpbird 257 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))))
231 eqid 2730 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
232 eqid 2730 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))
23313, 231, 232cncfcn 24810 . . . . . . . . 9 (((-𝑅[,]𝑅) ⊆ ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
2348, 176, 233syl2anc 584 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
235230, 234eleqtrd 2831 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
236 eqid 2730 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
237236logcn 26563 . . . . . . . . 9 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
238 difss 4102 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
239 eqid 2730 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
24013, 232, 239cncfcn 24810 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
241238, 9, 240mp2an 692 . . . . . . . . 9 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
242237, 241eleqtri 2827 . . . . . . . 8 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
243242a1i 11 . . . . . . 7 (𝑅 ∈ ℝ+ → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
244174, 235, 243cnmpt11f 23558 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
24513, 231, 239cncfcn 24810 . . . . . . 7 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
2468, 10, 245syl2anc 584 . . . . . 6 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
247244, 246eleqtrrd 2832 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
248170, 247mulcncf 25353 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
249166, 248eqeltrd 2829 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
250219oveq2d 7406 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
251199, 204subcld 11540 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
252251sqrtcld 15413 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
25320, 180, 252mulassd 11204 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
25416, 17, 19divrecd 11968 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = (𝑡 · (1 / 𝑅)))
255254oveq1d 7405 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)))
25616, 180, 180mulassd 11204 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
257255, 256eqtrd 2765 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
258257oveq1d 7405 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
259250, 253, 2583eqtr2d 2771 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
260259mpteq2dva 5203 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))))
261179, 179mulcld 11201 . . . . . . 7 (𝑅 ∈ ℝ+ → ((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ)
262 cncfmptc 24812 . . . . . . 7 ((((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
263261, 8, 10, 262syl3anc 1373 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
264189, 263mulcncf 25353 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑡 · ((1 / 𝑅) · (1 / 𝑅)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
265264, 224mulcncf 25353 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
266260, 265eqeltrd 2829 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26713, 15, 249, 266cncfmpt2f 24815 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26812, 267mulcncf 25353 1 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917   class class class wbr 5110  cmpt 5191  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  +crp 12958  (,]cioc 13314  [,]cicc 13316  cexp 14033  csqrt 15206  abscabs 15207  t crest 17390  TopOpenctopn 17391  fldccnfld 21271  TopOnctopon 22804   Cn ccn 23118   ×t ctx 23454  cnccncf 24776  logclog 26470  arcsincasin 26779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-asin 26782
This theorem is referenced by:  areacirc  37714
  Copyright terms: Public domain W3C validator