Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Structured version   Visualization version   GIF version

Theorem areacirclem4 35795
Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem4
StepHypRef Expression
1 rpcn 12669 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
21sqcld 13790 . . 3 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
3 rpre 12667 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
43renegcld 11332 . . . . 5 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
5 iccssre 13090 . . . . 5 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 3, 5syl2anc 583 . . . 4 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
7 ax-resscn 10859 . . . 4 ℝ ⊆ ℂ
86, 7sstrdi 3929 . . 3 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℂ)
9 ssid 3939 . . . 4 ℂ ⊆ ℂ
109a1i 11 . . 3 (𝑅 ∈ ℝ+ → ℂ ⊆ ℂ)
11 cncfmptc 23981 . . 3 (((𝑅↑2) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
122, 8, 10, 11syl3anc 1369 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
13 eqid 2738 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413addcn 23934 . . . 4 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1514a1i 11 . . 3 (𝑅 ∈ ℝ+ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
168sselda 3917 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℂ)
171adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
18 rpne0 12675 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
1918adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
2016, 17, 19divcld 11681 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℂ)
21 asinval 25937 . . . . . . 7 ((𝑡 / 𝑅) ∈ ℂ → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
2220, 21syl 17 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
23 ax-icn 10861 . . . . . . . . . . . 12 i ∈ ℂ
2423a1i 11 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → i ∈ ℂ)
2524, 20mulcld 10926 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) ∈ ℂ)
26 1cnd 10901 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
2720sqcld 13790 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℂ)
2826, 27subcld 11262 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℂ)
2928sqrtcld 15077 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℂ)
3025, 29addcld 10925 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
31 0lt1 11427 . . . . . . . . . . . . . . 15 0 < 1
32 simp3 1136 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 𝑡 = 0)
3332oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = (0 / 𝑅))
341, 18div0d 11680 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (0 / 𝑅) = 0)
35343ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 / 𝑅) = 0)
3633, 35eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = 0)
3736oveq2d 7271 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = (i · 0))
38 it0e0 12125 . . . . . . . . . . . . . . . . . . . 20 (i · 0) = 0
3937, 38eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = 0)
4036oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((𝑡 / 𝑅)↑2) = (0↑2))
4140oveq2d 7271 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (1 − ((𝑡 / 𝑅)↑2)) = (1 − (0↑2)))
4241fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = (√‘(1 − (0↑2))))
43 sq0 13837 . . . . . . . . . . . . . . . . . . . . . . . 24 (0↑2) = 0
4443oveq2i 7266 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − (0↑2)) = (1 − 0)
45 1m0e1 12024 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − 0) = 1
4644, 45eqtri 2766 . . . . . . . . . . . . . . . . . . . . . 22 (1 − (0↑2)) = 1
4746fveq2i 6759 . . . . . . . . . . . . . . . . . . . . 21 (√‘(1 − (0↑2))) = (√‘1)
48 sqrt1 14911 . . . . . . . . . . . . . . . . . . . . 21 (√‘1) = 1
4947, 48eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (√‘(1 − (0↑2))) = 1
5042, 49eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = 1)
5139, 50oveq12d 7273 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (0 + 1))
52 0p1e1 12025 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
5351, 52eqtrdi 2795 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = 1)
5453breq2d 5082 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ 0 < 1))
55 0red 10909 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 0 ∈ ℝ)
56 1red 10907 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 1 ∈ ℝ)
5753, 56eqeltrd 2839 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
5855, 57ltnled 11052 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
5954, 58bitr3d 280 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < 1 ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
6031, 59mpbii 232 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
61603expa 1116 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
6261olcd 870 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
63 inelr 11893 . . . . . . . . . . . . . 14 ¬ i ∈ ℝ
6425, 29pncand 11263 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
65643adant3 1130 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
6665oveq1d 7270 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)))
6723a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i ∈ ℂ)
68203adant3 1130 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑡 / 𝑅) ∈ ℂ)
6913ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℂ)
70163adant3 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℂ)
71 simp3 1136 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ≠ 0)
7269, 70, 71divcld 11681 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℂ)
7367, 68, 72mulassd 10929 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
7466, 73eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
75183ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ≠ 0)
7670, 69, 71, 75divcan6d 11700 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((𝑡 / 𝑅) · (𝑅 / 𝑡)) = 1)
7776oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))) = (i · 1))
7867mulid1d 10923 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · 1) = i)
7974, 77, 783eqtrrd 2783 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
8079adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
81 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
82 1red 10907 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℝ)
836sselda 3917 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
843adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℝ)
8583, 84, 19redivcld 11733 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℝ)
8685resqcld 13893 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
8782, 86resubcld 11333 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℝ)
88 elicc2 13073 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
894, 3, 88syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
90 1red 10907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 1 ∈ ℝ)
91 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
923adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
9318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ≠ 0)
9491, 92, 93redivcld 11733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / 𝑅) ∈ ℝ)
9594resqcld 13893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
9690, 95subge0d 11495 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (0 ≤ (1 − ((𝑡 / 𝑅)↑2)) ↔ ((𝑡 / 𝑅)↑2) ≤ 1))
97 recn 10892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
9897adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
991adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℂ)
10098, 99, 93sqdivd 13805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
101100breq1d 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡 / 𝑅)↑2) ≤ 1 ↔ ((𝑡↑2) / (𝑅↑2)) ≤ 1))
102 resqcl 13772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
103102adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1043resqcld 13893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
105 rpgt0 12671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → 0 < 𝑅)
106 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ∈ ℝ)
107 0le0 12004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 ≤ 0
108107a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 0)
109 rpge0 12672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
110106, 3, 108, 109lt2sqd 13901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ (0↑2) < (𝑅↑2)))
11143a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → (0↑2) = 0)
112111breq1d 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → ((0↑2) < (𝑅↑2) ↔ 0 < (𝑅↑2)))
113110, 112bitrd 278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ 0 < (𝑅↑2)))
114105, 113mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → 0 < (𝑅↑2))
115104, 114elrpd 12698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ+)
116115adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ+)
117103, 90, 116ledivmuld 12754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (𝑡↑2) ≤ ((𝑅↑2) · 1)))
118 absresq 14942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
119118eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) = ((abs‘𝑡)↑2))
1202mulid1d 10923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → ((𝑅↑2) · 1) = (𝑅↑2))
121119, 120breqan12rd 5087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12297abscld 15076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
123122adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
12497absge0d 15084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
125124adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
126109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
127123, 92, 125, 126le2sqd 13902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12891, 92absled 15070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
129121, 127, 1283bitr2d 306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ (-𝑅𝑡𝑡𝑅)))
130117, 129bitrd 278 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (-𝑅𝑡𝑡𝑅)))
13196, 101, 1303bitrrd 305 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
132131biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
133132exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))))
1341333impd 1346 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
13589, 134sylbid 239 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
136135imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2)))
13787, 136resqrtcld 15057 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
1381373adant3 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
139138adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
14081, 139resubcld 11333 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
14133ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℝ)
142833adant3 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℝ)
143141, 142, 71redivcld 11733 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℝ)
144143adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (𝑅 / 𝑡) ∈ ℝ)
145140, 144remulcld 10936 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) ∈ ℝ)
14680, 145eqeltrd 2839 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i ∈ ℝ)
147146ex 412 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
1481473expa 1116 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
14963, 148mtoi 198 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
150149orcd 869 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
15162, 150pm2.61dane 3031 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
152 ianor 978 . . . . . . . . . . 11 (¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) ↔ (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
153151, 152sylibr 233 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
154 mnfxr 10963 . . . . . . . . . . . 12 -∞ ∈ ℝ*
155 0re 10908 . . . . . . . . . . . 12 0 ∈ ℝ
156 elioc2 13071 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)))
157154, 155, 156mp2an 688 . . . . . . . . . . 11 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
158 3simpb 1147 . . . . . . . . . . 11 ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
159157, 158sylbi 216 . . . . . . . . . 10 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
160153, 159nsyl 140 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0))
16130, 160eldifd 3894 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)))
162 fvres 6775 . . . . . . . 8 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
163161, 162syl 17 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
164163oveq2d 7271 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
16522, 164eqtr4d 2781 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
166165mpteq2dva 5170 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))))
167 negicn 11152 . . . . . . 7 -i ∈ ℂ
168167a1i 11 . . . . . 6 (𝑅 ∈ ℝ+ → -i ∈ ℂ)
169 cncfmptc 23981 . . . . . 6 ((-i ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
170168, 8, 10, 169syl3anc 1369 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
17113cnfldtopon 23852 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
172171a1i 11 . . . . . . . 8 (𝑅 ∈ ℝ+ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
173 resttopon 22220 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
174172, 8, 173syl2anc 583 . . . . . . 7 (𝑅 ∈ ℝ+ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
175161fmpttd 6971 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0)))
176 difssd 4063 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (ℂ ∖ (-∞(,]0)) ⊆ ℂ)
17716, 17, 19divrec2d 11685 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = ((1 / 𝑅) · 𝑡))
178177oveq2d 7271 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = (i · ((1 / 𝑅) · 𝑡)))
1791, 18reccld 11674 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 / 𝑅) ∈ ℂ)
180179adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 / 𝑅) ∈ ℂ)
18124, 180, 16mulassd 10929 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (1 / 𝑅)) · 𝑡) = (i · ((1 / 𝑅) · 𝑡)))
182178, 181eqtr4d 2781 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = ((i · (1 / 𝑅)) · 𝑡))
183182mpteq2dva 5170 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)))
18423a1i 11 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → i ∈ ℂ)
185184, 179mulcld 10926 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (i · (1 / 𝑅)) ∈ ℂ)
186 cncfmptc 23981 . . . . . . . . . . . . . 14 (((i · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
187185, 8, 10, 186syl3anc 1369 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
188 cncfmptid 23982 . . . . . . . . . . . . . 14 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
1898, 10, 188syl2anc 583 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
190187, 189mulcncf 24515 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
191183, 190eqeltrd 2839 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
19217, 29mulcld 10926 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
193192, 17, 19divrec2d 11685 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
19429, 17, 19divcan3d 11686 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = (√‘(1 − ((𝑡 / 𝑅)↑2))))
195104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
1963sqge0d 13894 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅↑2))
197196adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (𝑅↑2))
198195, 197, 87, 136sqrtmuld 15064 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
1992adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
200199, 26, 27subdid 11361 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))))
201199mulid1d 10923 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · 1) = (𝑅↑2))
20216, 17, 19sqdivd 13805 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
203202oveq2d 7271 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))))
20416sqcld 13790 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℂ)
205 sqne0 13771 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℂ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
2061, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
20718, 206mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ+ → (𝑅↑2) ≠ 0)
208207adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ≠ 0)
209204, 199, 208divcan2d 11683 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))) = (𝑡↑2))
210203, 209eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = (𝑡↑2))
211201, 210oveq12d 7273 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
212200, 211eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
213212fveq2d 6760 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
214109adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ 𝑅)
21584, 214sqrtsqd 15059 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(𝑅↑2)) = 𝑅)
216215oveq1d 7270 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
217198, 213, 2163eqtr3rd 2787 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
218217oveq2d 7271 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
219193, 194, 2183eqtr3d 2786 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
220219mpteq2dva 5170 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
221 cncfmptc 23981 . . . . . . . . . . . . . 14 (((1 / 𝑅) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
222179, 8, 10, 221syl3anc 1369 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
223 areacirclem2 35793 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
2243, 109, 223syl2anc 583 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
225222, 224mulcncf 24515 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
226220, 225eqeltrd 2839 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
22713, 15, 191, 226cncfmpt2f 23984 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
228 cncffvrn 23967 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
229176, 227, 228syl2anc 583 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
230175, 229mpbird 256 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))))
231 eqid 2738 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
232 eqid 2738 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))
23313, 231, 232cncfcn 23979 . . . . . . . . 9 (((-𝑅[,]𝑅) ⊆ ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
2348, 176, 233syl2anc 583 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
235230, 234eleqtrd 2841 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
236 eqid 2738 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
237236logcn 25707 . . . . . . . . 9 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
238 difss 4062 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
239 eqid 2738 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
24013, 232, 239cncfcn 23979 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
241238, 9, 240mp2an 688 . . . . . . . . 9 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
242237, 241eleqtri 2837 . . . . . . . 8 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
243242a1i 11 . . . . . . 7 (𝑅 ∈ ℝ+ → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
244174, 235, 243cnmpt11f 22723 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
24513, 231, 239cncfcn 23979 . . . . . . 7 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
2468, 10, 245syl2anc 583 . . . . . 6 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
247244, 246eleqtrrd 2842 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
248170, 247mulcncf 24515 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
249166, 248eqeltrd 2839 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
250219oveq2d 7271 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
251199, 204subcld 11262 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
252251sqrtcld 15077 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
25320, 180, 252mulassd 10929 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
25416, 17, 19divrecd 11684 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = (𝑡 · (1 / 𝑅)))
255254oveq1d 7270 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)))
25616, 180, 180mulassd 10929 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
257255, 256eqtrd 2778 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
258257oveq1d 7270 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
259250, 253, 2583eqtr2d 2784 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
260259mpteq2dva 5170 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))))
261179, 179mulcld 10926 . . . . . . 7 (𝑅 ∈ ℝ+ → ((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ)
262 cncfmptc 23981 . . . . . . 7 ((((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
263261, 8, 10, 262syl3anc 1369 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
264189, 263mulcncf 24515 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑡 · ((1 / 𝑅) · (1 / 𝑅)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
265264, 224mulcncf 24515 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
266260, 265eqeltrd 2839 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26713, 15, 249, 266cncfmpt2f 23984 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26812, 267mulcncf 24515 1 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883   class class class wbr 5070  cmpt 5153  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  +crp 12659  (,]cioc 13009  [,]cicc 13011  cexp 13710  csqrt 14872  abscabs 14873  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619  cnccncf 23945  logclog 25615  arcsincasin 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-asin 25920
This theorem is referenced by:  areacirc  35797
  Copyright terms: Public domain W3C validator