Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Structured version   Visualization version   GIF version

Theorem areacirclem4 37697
Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem4
StepHypRef Expression
1 rpcn 13042 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
21sqcld 14180 . . 3 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
3 rpre 13040 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
43renegcld 11687 . . . . 5 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
5 iccssre 13465 . . . . 5 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 3, 5syl2anc 584 . . . 4 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
7 ax-resscn 11209 . . . 4 ℝ ⊆ ℂ
86, 7sstrdi 4007 . . 3 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℂ)
9 ssid 4017 . . . 4 ℂ ⊆ ℂ
109a1i 11 . . 3 (𝑅 ∈ ℝ+ → ℂ ⊆ ℂ)
11 cncfmptc 24951 . . 3 (((𝑅↑2) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
122, 8, 10, 11syl3anc 1370 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
13 eqid 2734 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413addcn 24900 . . . 4 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1514a1i 11 . . 3 (𝑅 ∈ ℝ+ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
168sselda 3994 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℂ)
171adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
18 rpne0 13048 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
1918adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
2016, 17, 19divcld 12040 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℂ)
21 asinval 26939 . . . . . . 7 ((𝑡 / 𝑅) ∈ ℂ → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
2220, 21syl 17 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
23 ax-icn 11211 . . . . . . . . . . . 12 i ∈ ℂ
2423a1i 11 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → i ∈ ℂ)
2524, 20mulcld 11278 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) ∈ ℂ)
26 1cnd 11253 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
2720sqcld 14180 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℂ)
2826, 27subcld 11617 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℂ)
2928sqrtcld 15472 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℂ)
3025, 29addcld 11277 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
31 0lt1 11782 . . . . . . . . . . . . . . 15 0 < 1
32 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 𝑡 = 0)
3332oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = (0 / 𝑅))
341, 18div0d 12039 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (0 / 𝑅) = 0)
35343ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 / 𝑅) = 0)
3633, 35eqtrd 2774 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = 0)
3736oveq2d 7446 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = (i · 0))
38 it0e0 12485 . . . . . . . . . . . . . . . . . . . 20 (i · 0) = 0
3937, 38eqtrdi 2790 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = 0)
4036oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((𝑡 / 𝑅)↑2) = (0↑2))
4140oveq2d 7446 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (1 − ((𝑡 / 𝑅)↑2)) = (1 − (0↑2)))
4241fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = (√‘(1 − (0↑2))))
43 sq0 14227 . . . . . . . . . . . . . . . . . . . . . . . 24 (0↑2) = 0
4443oveq2i 7441 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − (0↑2)) = (1 − 0)
45 1m0e1 12384 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − 0) = 1
4644, 45eqtri 2762 . . . . . . . . . . . . . . . . . . . . . 22 (1 − (0↑2)) = 1
4746fveq2i 6909 . . . . . . . . . . . . . . . . . . . . 21 (√‘(1 − (0↑2))) = (√‘1)
48 sqrt1 15306 . . . . . . . . . . . . . . . . . . . . 21 (√‘1) = 1
4947, 48eqtri 2762 . . . . . . . . . . . . . . . . . . . 20 (√‘(1 − (0↑2))) = 1
5042, 49eqtrdi 2790 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = 1)
5139, 50oveq12d 7448 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (0 + 1))
52 0p1e1 12385 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
5351, 52eqtrdi 2790 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = 1)
5453breq2d 5159 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ 0 < 1))
55 0red 11261 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 0 ∈ ℝ)
56 1red 11259 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 1 ∈ ℝ)
5753, 56eqeltrd 2838 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
5855, 57ltnled 11405 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
5954, 58bitr3d 281 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < 1 ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
6031, 59mpbii 233 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
61603expa 1117 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
6261olcd 874 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
63 inelr 12253 . . . . . . . . . . . . . 14 ¬ i ∈ ℝ
6425, 29pncand 11618 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
65643adant3 1131 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
6665oveq1d 7445 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)))
6723a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i ∈ ℂ)
68203adant3 1131 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑡 / 𝑅) ∈ ℂ)
6913ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℂ)
70163adant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℂ)
71 simp3 1137 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ≠ 0)
7269, 70, 71divcld 12040 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℂ)
7367, 68, 72mulassd 11281 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
7466, 73eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
75183ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ≠ 0)
7670, 69, 71, 75divcan6d 12059 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((𝑡 / 𝑅) · (𝑅 / 𝑡)) = 1)
7776oveq2d 7446 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))) = (i · 1))
7867mulridd 11275 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · 1) = i)
7974, 77, 783eqtrrd 2779 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
8079adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
81 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
82 1red 11259 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℝ)
836sselda 3994 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
843adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℝ)
8583, 84, 19redivcld 12092 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℝ)
8685resqcld 14161 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
8782, 86resubcld 11688 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℝ)
88 elicc2 13448 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
894, 3, 88syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
90 1red 11259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 1 ∈ ℝ)
91 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
923adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
9318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ≠ 0)
9491, 92, 93redivcld 12092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / 𝑅) ∈ ℝ)
9594resqcld 14161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
9690, 95subge0d 11850 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (0 ≤ (1 − ((𝑡 / 𝑅)↑2)) ↔ ((𝑡 / 𝑅)↑2) ≤ 1))
97 recn 11242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
9897adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
991adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℂ)
10098, 99, 93sqdivd 14195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
101100breq1d 5157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡 / 𝑅)↑2) ≤ 1 ↔ ((𝑡↑2) / (𝑅↑2)) ≤ 1))
102 resqcl 14160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
103102adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1043resqcld 14161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
105 rpgt0 13044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → 0 < 𝑅)
106 0red 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ∈ ℝ)
107 0le0 12364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 ≤ 0
108107a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 0)
109 rpge0 13045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
110106, 3, 108, 109lt2sqd 14291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ (0↑2) < (𝑅↑2)))
11143a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → (0↑2) = 0)
112111breq1d 5157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → ((0↑2) < (𝑅↑2) ↔ 0 < (𝑅↑2)))
113110, 112bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ 0 < (𝑅↑2)))
114105, 113mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → 0 < (𝑅↑2))
115104, 114elrpd 13071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ+)
116115adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ+)
117103, 90, 116ledivmuld 13127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (𝑡↑2) ≤ ((𝑅↑2) · 1)))
118 absresq 15337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
119118eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) = ((abs‘𝑡)↑2))
1202mulridd 11275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → ((𝑅↑2) · 1) = (𝑅↑2))
121119, 120breqan12rd 5164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12297abscld 15471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
123122adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
12497absge0d 15479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
125124adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
126109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
127123, 92, 125, 126le2sqd 14292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12891, 92absled 15465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
129121, 127, 1283bitr2d 307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ (-𝑅𝑡𝑡𝑅)))
130117, 129bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (-𝑅𝑡𝑡𝑅)))
13196, 101, 1303bitrrd 306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
132131biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
133132exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))))
1341333impd 1347 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
13589, 134sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
136135imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2)))
13787, 136resqrtcld 15452 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
1381373adant3 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
139138adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
14081, 139resubcld 11688 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
14133ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℝ)
142833adant3 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℝ)
143141, 142, 71redivcld 12092 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℝ)
144143adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (𝑅 / 𝑡) ∈ ℝ)
145140, 144remulcld 11288 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) ∈ ℝ)
14680, 145eqeltrd 2838 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i ∈ ℝ)
147146ex 412 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
1481473expa 1117 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
14963, 148mtoi 199 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
150149orcd 873 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
15162, 150pm2.61dane 3026 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
152 ianor 983 . . . . . . . . . . 11 (¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) ↔ (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
153151, 152sylibr 234 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
154 mnfxr 11315 . . . . . . . . . . . 12 -∞ ∈ ℝ*
155 0re 11260 . . . . . . . . . . . 12 0 ∈ ℝ
156 elioc2 13446 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)))
157154, 155, 156mp2an 692 . . . . . . . . . . 11 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
158 3simpb 1148 . . . . . . . . . . 11 ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
159157, 158sylbi 217 . . . . . . . . . 10 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
160153, 159nsyl 140 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0))
16130, 160eldifd 3973 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)))
162 fvres 6925 . . . . . . . 8 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
163161, 162syl 17 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
164163oveq2d 7446 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
16522, 164eqtr4d 2777 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
166165mpteq2dva 5247 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))))
167 negicn 11506 . . . . . . 7 -i ∈ ℂ
168167a1i 11 . . . . . 6 (𝑅 ∈ ℝ+ → -i ∈ ℂ)
169 cncfmptc 24951 . . . . . 6 ((-i ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
170168, 8, 10, 169syl3anc 1370 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
17113cnfldtopon 24818 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
172171a1i 11 . . . . . . . 8 (𝑅 ∈ ℝ+ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
173 resttopon 23184 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
174172, 8, 173syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ+ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
175161fmpttd 7134 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0)))
176 difssd 4146 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (ℂ ∖ (-∞(,]0)) ⊆ ℂ)
17716, 17, 19divrec2d 12044 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = ((1 / 𝑅) · 𝑡))
178177oveq2d 7446 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = (i · ((1 / 𝑅) · 𝑡)))
1791, 18reccld 12033 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 / 𝑅) ∈ ℂ)
180179adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 / 𝑅) ∈ ℂ)
18124, 180, 16mulassd 11281 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (1 / 𝑅)) · 𝑡) = (i · ((1 / 𝑅) · 𝑡)))
182178, 181eqtr4d 2777 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = ((i · (1 / 𝑅)) · 𝑡))
183182mpteq2dva 5247 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)))
18423a1i 11 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → i ∈ ℂ)
185184, 179mulcld 11278 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (i · (1 / 𝑅)) ∈ ℂ)
186 cncfmptc 24951 . . . . . . . . . . . . . 14 (((i · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
187185, 8, 10, 186syl3anc 1370 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
188 cncfmptid 24952 . . . . . . . . . . . . . 14 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
1898, 10, 188syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
190187, 189mulcncf 25493 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
191183, 190eqeltrd 2838 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
19217, 29mulcld 11278 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
193192, 17, 19divrec2d 12044 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
19429, 17, 19divcan3d 12045 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = (√‘(1 − ((𝑡 / 𝑅)↑2))))
195104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
1963sqge0d 14173 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅↑2))
197196adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (𝑅↑2))
198195, 197, 87, 136sqrtmuld 15459 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
1992adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
200199, 26, 27subdid 11716 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))))
201199mulridd 11275 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · 1) = (𝑅↑2))
20216, 17, 19sqdivd 14195 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
203202oveq2d 7446 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))))
20416sqcld 14180 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℂ)
205 sqne0 14159 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℂ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
2061, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
20718, 206mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ+ → (𝑅↑2) ≠ 0)
208207adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ≠ 0)
209204, 199, 208divcan2d 12042 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))) = (𝑡↑2))
210203, 209eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = (𝑡↑2))
211201, 210oveq12d 7448 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
212200, 211eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
213212fveq2d 6910 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
214109adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ 𝑅)
21584, 214sqrtsqd 15454 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(𝑅↑2)) = 𝑅)
216215oveq1d 7445 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
217198, 213, 2163eqtr3rd 2783 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
218217oveq2d 7446 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
219193, 194, 2183eqtr3d 2782 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
220219mpteq2dva 5247 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
221 cncfmptc 24951 . . . . . . . . . . . . . 14 (((1 / 𝑅) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
222179, 8, 10, 221syl3anc 1370 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
223 areacirclem2 37695 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
2243, 109, 223syl2anc 584 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
225222, 224mulcncf 25493 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
226220, 225eqeltrd 2838 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
22713, 15, 191, 226cncfmpt2f 24954 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
228 cncfcdm 24937 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
229176, 227, 228syl2anc 584 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
230175, 229mpbird 257 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))))
231 eqid 2734 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
232 eqid 2734 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))
23313, 231, 232cncfcn 24949 . . . . . . . . 9 (((-𝑅[,]𝑅) ⊆ ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
2348, 176, 233syl2anc 584 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
235230, 234eleqtrd 2840 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
236 eqid 2734 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
237236logcn 26703 . . . . . . . . 9 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
238 difss 4145 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
239 eqid 2734 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
24013, 232, 239cncfcn 24949 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
241238, 9, 240mp2an 692 . . . . . . . . 9 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
242237, 241eleqtri 2836 . . . . . . . 8 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
243242a1i 11 . . . . . . 7 (𝑅 ∈ ℝ+ → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
244174, 235, 243cnmpt11f 23687 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
24513, 231, 239cncfcn 24949 . . . . . . 7 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
2468, 10, 245syl2anc 584 . . . . . 6 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
247244, 246eleqtrrd 2841 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
248170, 247mulcncf 25493 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
249166, 248eqeltrd 2838 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
250219oveq2d 7446 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
251199, 204subcld 11617 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
252251sqrtcld 15472 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
25320, 180, 252mulassd 11281 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
25416, 17, 19divrecd 12043 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = (𝑡 · (1 / 𝑅)))
255254oveq1d 7445 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)))
25616, 180, 180mulassd 11281 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
257255, 256eqtrd 2774 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
258257oveq1d 7445 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
259250, 253, 2583eqtr2d 2780 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
260259mpteq2dva 5247 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))))
261179, 179mulcld 11278 . . . . . . 7 (𝑅 ∈ ℝ+ → ((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ)
262 cncfmptc 24951 . . . . . . 7 ((((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
263261, 8, 10, 262syl3anc 1370 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
264189, 263mulcncf 25493 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑡 · ((1 / 𝑅) · (1 / 𝑅)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
265264, 224mulcncf 25493 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
266260, 265eqeltrd 2838 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26713, 15, 249, 266cncfmpt2f 24954 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26812, 267mulcncf 25493 1 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cdif 3959  wss 3962   class class class wbr 5147  cmpt 5230  cres 5690  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153  ici 11154   + caddc 11155   · cmul 11157  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  2c2 12318  +crp 13031  (,]cioc 13384  [,]cicc 13386  cexp 14098  csqrt 15268  abscabs 15269  t crest 17466  TopOpenctopn 17467  fldccnfld 21381  TopOnctopon 22931   Cn ccn 23247   ×t ctx 23583  cnccncf 24915  logclog 26610  arcsincasin 26919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cxp 26613  df-asin 26922
This theorem is referenced by:  areacirc  37699
  Copyright terms: Public domain W3C validator