![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chsssh | Structured version Visualization version GIF version |
Description: Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsssh | ⊢ Cℋ ⊆ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 30982 | . 2 ⊢ (𝑥 ∈ Cℋ → 𝑥 ∈ Sℋ ) | |
2 | 1 | ssriv 3981 | 1 ⊢ Cℋ ⊆ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3943 Sℋ csh 30686 Cℋ cch 30687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fv 6544 df-ov 7407 df-ch 30979 |
This theorem is referenced by: chex 30984 chsspwh 31005 chintcli 31089 shatomistici 32119 |
Copyright terms: Public domain | W3C validator |