![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chsssh | Structured version Visualization version GIF version |
Description: Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsssh | ⊢ Cℋ ⊆ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 28632 | . 2 ⊢ (𝑥 ∈ Cℋ → 𝑥 ∈ Sℋ ) | |
2 | 1 | ssriv 3831 | 1 ⊢ Cℋ ⊆ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3798 Sℋ csh 28336 Cℋ cch 28337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-xp 5352 df-cnv 5354 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fv 6135 df-ov 6913 df-ch 28629 |
This theorem is referenced by: chex 28634 chsspwh 28655 chintcli 28741 shatomistici 29771 |
Copyright terms: Public domain | W3C validator |