| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chsssh | Structured version Visualization version GIF version | ||
| Description: Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chsssh | ⊢ Cℋ ⊆ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31210 | . 2 ⊢ (𝑥 ∈ Cℋ → 𝑥 ∈ Sℋ ) | |
| 2 | 1 | ssriv 3967 | 1 ⊢ Cℋ ⊆ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 Sℋ csh 30914 Cℋ cch 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fv 6544 df-ov 7413 df-ch 31207 |
| This theorem is referenced by: chex 31212 chsspwh 31233 chintcli 31317 shatomistici 32347 |
| Copyright terms: Public domain | W3C validator |