| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chsssh | Structured version Visualization version GIF version | ||
| Description: Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chsssh | ⊢ Cℋ ⊆ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31204 | . 2 ⊢ (𝑥 ∈ Cℋ → 𝑥 ∈ Sℋ ) | |
| 2 | 1 | ssriv 3933 | 1 ⊢ Cℋ ⊆ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 Sℋ csh 30908 Cℋ cch 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 df-ov 7349 df-ch 31201 |
| This theorem is referenced by: chex 31206 chsspwh 31227 chintcli 31311 shatomistici 32341 |
| Copyright terms: Public domain | W3C validator |