Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chsssh | Structured version Visualization version GIF version |
Description: Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsssh | ⊢ Cℋ ⊆ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 29574 | . 2 ⊢ (𝑥 ∈ Cℋ → 𝑥 ∈ Sℋ ) | |
2 | 1 | ssriv 3930 | 1 ⊢ Cℋ ⊆ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3892 Sℋ csh 29278 Cℋ cch 29279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fv 6439 df-ov 7272 df-ch 29571 |
This theorem is referenced by: chex 29576 chsspwh 29597 chintcli 29681 shatomistici 30711 |
Copyright terms: Public domain | W3C validator |