Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chex | Structured version Visualization version GIF version |
Description: The set of closed subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chex | ⊢ Cℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shex 29863 | . 2 ⊢ Sℋ ∈ V | |
2 | chsssh 29876 | . 2 ⊢ Cℋ ⊆ Sℋ | |
3 | 1, 2 | ssexi 5267 | 1 ⊢ Cℋ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 Sℋ csh 29579 Cℋ cch 29580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-pow 5309 ax-hilex 29650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fv 6488 df-ov 7341 df-sh 29858 df-ch 29872 |
This theorem is referenced by: isst 30864 ishst 30865 |
Copyright terms: Public domain | W3C validator |