| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch 31202 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 “ cima 5617 (class class class)co 7346 ↑m cmap 8750 ℕcn 12125 ⇝𝑣 chli 30907 Sℋ csh 30908 Cℋ cch 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 df-ov 7349 df-ch 31201 |
| This theorem is referenced by: chsssh 31205 chshii 31207 ch0 31208 chss 31209 choccl 31286 chjval 31332 chjcl 31337 pjhth 31373 pjhtheu 31374 pjpreeq 31378 pjpjpre 31399 ch0le 31421 chle0 31423 chslej 31478 chjcom 31486 chub1 31487 chlub 31489 chlej1 31490 chlej2 31491 spansnsh 31541 fh1 31598 fh2 31599 chscllem1 31617 chscllem2 31618 chscllem3 31619 chscllem4 31620 chscl 31621 pjorthi 31649 pjoi0 31697 hstoc 32202 hstnmoc 32203 ch1dle 32332 atomli 32362 chirredlem3 32372 sumdmdii 32395 |
| Copyright terms: Public domain | W3C validator |