HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chsh Structured version   Visualization version   GIF version

Theorem chsh 29487
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
chsh (𝐻C𝐻S )

Proof of Theorem chsh
StepHypRef Expression
1 isch 29485 . 2 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
21simplbi 497 1 (𝐻C𝐻S )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  cima 5583  (class class class)co 7255  m cmap 8573  cn 11903  𝑣 chli 29190   S csh 29191   C cch 29192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426  df-ov 7258  df-ch 29484
This theorem is referenced by:  chsssh  29488  chshii  29490  ch0  29491  chss  29492  choccl  29569  chjval  29615  chjcl  29620  pjhth  29656  pjhtheu  29657  pjpreeq  29661  pjpjpre  29682  ch0le  29704  chle0  29706  chslej  29761  chjcom  29769  chub1  29770  chlub  29772  chlej1  29773  chlej2  29774  spansnsh  29824  fh1  29881  fh2  29882  chscllem1  29900  chscllem2  29901  chscllem3  29902  chscllem4  29903  chscl  29904  pjorthi  29932  pjoi0  29980  hstoc  30485  hstnmoc  30486  ch1dle  30615  atomli  30645  chirredlem3  30655  sumdmdii  30678
  Copyright terms: Public domain W3C validator