![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 31251 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 “ cima 5692 (class class class)co 7431 ↑m cmap 8865 ℕcn 12264 ⇝𝑣 chli 30956 Sℋ csh 30957 Cℋ cch 30958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fv 6571 df-ov 7434 df-ch 31250 |
This theorem is referenced by: chsssh 31254 chshii 31256 ch0 31257 chss 31258 choccl 31335 chjval 31381 chjcl 31386 pjhth 31422 pjhtheu 31423 pjpreeq 31427 pjpjpre 31448 ch0le 31470 chle0 31472 chslej 31527 chjcom 31535 chub1 31536 chlub 31538 chlej1 31539 chlej2 31540 spansnsh 31590 fh1 31647 fh2 31648 chscllem1 31666 chscllem2 31667 chscllem3 31668 chscllem4 31669 chscl 31670 pjorthi 31698 pjoi0 31746 hstoc 32251 hstnmoc 32252 ch1dle 32381 atomli 32411 chirredlem3 32421 sumdmdii 32444 |
Copyright terms: Public domain | W3C validator |