| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch 31151 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 “ cima 5641 (class class class)co 7387 ↑m cmap 8799 ℕcn 12186 ⇝𝑣 chli 30856 Sℋ csh 30857 Cℋ cch 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fv 6519 df-ov 7390 df-ch 31150 |
| This theorem is referenced by: chsssh 31154 chshii 31156 ch0 31157 chss 31158 choccl 31235 chjval 31281 chjcl 31286 pjhth 31322 pjhtheu 31323 pjpreeq 31327 pjpjpre 31348 ch0le 31370 chle0 31372 chslej 31427 chjcom 31435 chub1 31436 chlub 31438 chlej1 31439 chlej2 31440 spansnsh 31490 fh1 31547 fh2 31548 chscllem1 31566 chscllem2 31567 chscllem3 31568 chscllem4 31569 chscl 31570 pjorthi 31598 pjoi0 31646 hstoc 32151 hstnmoc 32152 ch1dle 32281 atomli 32311 chirredlem3 32321 sumdmdii 32344 |
| Copyright terms: Public domain | W3C validator |