Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 29485 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 “ cima 5583 (class class class)co 7255 ↑m cmap 8573 ℕcn 11903 ⇝𝑣 chli 29190 Sℋ csh 29191 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-ov 7258 df-ch 29484 |
This theorem is referenced by: chsssh 29488 chshii 29490 ch0 29491 chss 29492 choccl 29569 chjval 29615 chjcl 29620 pjhth 29656 pjhtheu 29657 pjpreeq 29661 pjpjpre 29682 ch0le 29704 chle0 29706 chslej 29761 chjcom 29769 chub1 29770 chlub 29772 chlej1 29773 chlej2 29774 spansnsh 29824 fh1 29881 fh2 29882 chscllem1 29900 chscllem2 29901 chscllem3 29902 chscllem4 29903 chscl 29904 pjorthi 29932 pjoi0 29980 hstoc 30485 hstnmoc 30486 ch1dle 30615 atomli 30645 chirredlem3 30655 sumdmdii 30678 |
Copyright terms: Public domain | W3C validator |