Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 29584 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 “ cima 5592 (class class class)co 7275 ↑m cmap 8615 ℕcn 11973 ⇝𝑣 chli 29289 Sℋ csh 29290 Cℋ cch 29291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 df-ov 7278 df-ch 29583 |
This theorem is referenced by: chsssh 29587 chshii 29589 ch0 29590 chss 29591 choccl 29668 chjval 29714 chjcl 29719 pjhth 29755 pjhtheu 29756 pjpreeq 29760 pjpjpre 29781 ch0le 29803 chle0 29805 chslej 29860 chjcom 29868 chub1 29869 chlub 29871 chlej1 29872 chlej2 29873 spansnsh 29923 fh1 29980 fh2 29981 chscllem1 29999 chscllem2 30000 chscllem3 30001 chscllem4 30002 chscl 30003 pjorthi 30031 pjoi0 30079 hstoc 30584 hstnmoc 30585 ch1dle 30714 atomli 30744 chirredlem3 30754 sumdmdii 30777 |
Copyright terms: Public domain | W3C validator |