HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chsh Structured version   Visualization version   GIF version

Theorem chsh 30515
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
chsh (𝐻C𝐻S )

Proof of Theorem chsh
StepHypRef Expression
1 isch 30513 . 2 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
21simplbi 498 1 (𝐻C𝐻S )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3948  cima 5679  (class class class)co 7411  m cmap 8822  cn 12214  𝑣 chli 30218   S csh 30219   C cch 30220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fv 6551  df-ov 7414  df-ch 30512
This theorem is referenced by:  chsssh  30516  chshii  30518  ch0  30519  chss  30520  choccl  30597  chjval  30643  chjcl  30648  pjhth  30684  pjhtheu  30685  pjpreeq  30689  pjpjpre  30710  ch0le  30732  chle0  30734  chslej  30789  chjcom  30797  chub1  30798  chlub  30800  chlej1  30801  chlej2  30802  spansnsh  30852  fh1  30909  fh2  30910  chscllem1  30928  chscllem2  30929  chscllem3  30930  chscllem4  30931  chscl  30932  pjorthi  30960  pjoi0  31008  hstoc  31513  hstnmoc  31514  ch1dle  31643  atomli  31673  chirredlem3  31683  sumdmdii  31706
  Copyright terms: Public domain W3C validator