| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch 31242 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3950 “ cima 5687 (class class class)co 7432 ↑m cmap 8867 ℕcn 12267 ⇝𝑣 chli 30947 Sℋ csh 30948 Cℋ cch 30949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fv 6568 df-ov 7435 df-ch 31241 |
| This theorem is referenced by: chsssh 31245 chshii 31247 ch0 31248 chss 31249 choccl 31326 chjval 31372 chjcl 31377 pjhth 31413 pjhtheu 31414 pjpreeq 31418 pjpjpre 31439 ch0le 31461 chle0 31463 chslej 31518 chjcom 31526 chub1 31527 chlub 31529 chlej1 31530 chlej2 31531 spansnsh 31581 fh1 31638 fh2 31639 chscllem1 31657 chscllem2 31658 chscllem3 31659 chscllem4 31660 chscl 31661 pjorthi 31689 pjoi0 31737 hstoc 32242 hstnmoc 32243 ch1dle 32372 atomli 32402 chirredlem3 32412 sumdmdii 32435 |
| Copyright terms: Public domain | W3C validator |