| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch 31124 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 “ cima 5634 (class class class)co 7369 ↑m cmap 8776 ℕcn 12162 ⇝𝑣 chli 30829 Sℋ csh 30830 Cℋ cch 30831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fv 6507 df-ov 7372 df-ch 31123 |
| This theorem is referenced by: chsssh 31127 chshii 31129 ch0 31130 chss 31131 choccl 31208 chjval 31254 chjcl 31259 pjhth 31295 pjhtheu 31296 pjpreeq 31300 pjpjpre 31321 ch0le 31343 chle0 31345 chslej 31400 chjcom 31408 chub1 31409 chlub 31411 chlej1 31412 chlej2 31413 spansnsh 31463 fh1 31520 fh2 31521 chscllem1 31539 chscllem2 31540 chscllem3 31541 chscllem4 31542 chscl 31543 pjorthi 31571 pjoi0 31619 hstoc 32124 hstnmoc 32125 ch1dle 32254 atomli 32284 chirredlem3 32294 sumdmdii 32317 |
| Copyright terms: Public domain | W3C validator |