| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch 31166 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3903 “ cima 5622 (class class class)co 7349 ↑m cmap 8753 ℕcn 12128 ⇝𝑣 chli 30871 Sℋ csh 30872 Cℋ cch 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 df-ov 7352 df-ch 31165 |
| This theorem is referenced by: chsssh 31169 chshii 31171 ch0 31172 chss 31173 choccl 31250 chjval 31296 chjcl 31301 pjhth 31337 pjhtheu 31338 pjpreeq 31342 pjpjpre 31363 ch0le 31385 chle0 31387 chslej 31442 chjcom 31450 chub1 31451 chlub 31453 chlej1 31454 chlej2 31455 spansnsh 31505 fh1 31562 fh2 31563 chscllem1 31581 chscllem2 31582 chscllem3 31583 chscllem4 31584 chscl 31585 pjorthi 31613 pjoi0 31661 hstoc 32166 hstnmoc 32167 ch1dle 32296 atomli 32326 chirredlem3 32336 sumdmdii 32359 |
| Copyright terms: Public domain | W3C validator |