![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 31254 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 “ cima 5703 (class class class)co 7448 ↑m cmap 8884 ℕcn 12293 ⇝𝑣 chli 30959 Sℋ csh 30960 Cℋ cch 30961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fv 6581 df-ov 7451 df-ch 31253 |
This theorem is referenced by: chsssh 31257 chshii 31259 ch0 31260 chss 31261 choccl 31338 chjval 31384 chjcl 31389 pjhth 31425 pjhtheu 31426 pjpreeq 31430 pjpjpre 31451 ch0le 31473 chle0 31475 chslej 31530 chjcom 31538 chub1 31539 chlub 31541 chlej1 31542 chlej2 31543 spansnsh 31593 fh1 31650 fh2 31651 chscllem1 31669 chscllem2 31670 chscllem3 31671 chscllem4 31672 chscl 31673 pjorthi 31701 pjoi0 31749 hstoc 32254 hstnmoc 32255 ch1dle 32384 atomli 32414 chirredlem3 32424 sumdmdii 32447 |
Copyright terms: Public domain | W3C validator |