MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovrspc2v Structured version   Visualization version   GIF version

Theorem ovrspc2v 7301
Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
Assertion
Ref Expression
ovrspc2v (((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑦,𝑌   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem ovrspc2v
StepHypRef Expression
1 oveq1 7282 . . 3 (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦))
21eleq1d 2823 . 2 (𝑥 = 𝑋 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑦) ∈ 𝐶))
3 oveq2 7283 . . 3 (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌))
43eleq1d 2823 . 2 (𝑦 = 𝑌 → ((𝑋𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑌) ∈ 𝐶))
52, 4rspc2va 3571 1 (((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  off  7551  mgmcl  18329  mndpropd  18410  issubmnd  18412  submcl  18451  issubg2  18770  gass  18907  lmodprop2d  20185  lsspropd  20279  gsummatr01lem2  21805  off2  30978  ofcf  32071  fsuppind  40279  submgmcl  45348  clcllaw  45385
  Copyright terms: Public domain W3C validator