MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovrspc2v Structured version   Visualization version   GIF version

Theorem ovrspc2v 7457
Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
Assertion
Ref Expression
ovrspc2v (((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑦,𝑌   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem ovrspc2v
StepHypRef Expression
1 oveq1 7438 . . 3 (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦))
21eleq1d 2824 . 2 (𝑥 = 𝑋 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑦) ∈ 𝐶))
3 oveq2 7439 . . 3 (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌))
43eleq1d 2824 . 2 (𝑦 = 𝑌 → ((𝑋𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑌) ∈ 𝐶))
52, 4rspc2va 3634 1 (((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  off  7715  mgmcl  18669  submgmcl  18733  sgrppropd  18757  mndpropd  18785  issubmnd  18787  submcl  18838  issubg2  19172  gass  19332  lmodprop2d  20939  lsspropd  21034  gsummatr01lem2  22678  off2  32658  ofcf  34084  fsuppind  42577  clcllaw  48035
  Copyright terms: Public domain W3C validator