Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovrspc2v | Structured version Visualization version GIF version |
Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.) |
Ref | Expression |
---|---|
ovrspc2v | ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑥 = 𝑋 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑦) ∈ 𝐶)) |
3 | oveq2 7263 | . . 3 ⊢ (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌)) | |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝑦 = 𝑌 → ((𝑋𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑌) ∈ 𝐶)) |
5 | 2, 4 | rspc2va 3563 | 1 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: off 7529 mgmcl 18244 mndpropd 18325 issubmnd 18327 submcl 18366 issubg2 18685 gass 18822 lmodprop2d 20100 lsspropd 20194 gsummatr01lem2 21713 off2 30879 ofcf 31971 fsuppind 40202 submgmcl 45236 clcllaw 45273 |
Copyright terms: Public domain | W3C validator |