MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovrspc2v Structured version   Visualization version   GIF version

Theorem ovrspc2v 7395
Description: If an operation value is an element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
Assertion
Ref Expression
ovrspc2v (((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑦,𝑌   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem ovrspc2v
StepHypRef Expression
1 oveq1 7376 . . 3 (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦))
21eleq1d 2813 . 2 (𝑥 = 𝑋 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑦) ∈ 𝐶))
3 oveq2 7377 . . 3 (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌))
43eleq1d 2813 . 2 (𝑦 = 𝑌 → ((𝑋𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑌) ∈ 𝐶))
52, 4rspc2va 3597 1 (((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  off  7651  mgmcl  18552  submgmcl  18616  sgrppropd  18640  mndpropd  18668  issubmnd  18670  submcl  18721  issubg2  19055  gass  19215  lmodprop2d  20862  lsspropd  20956  gsummatr01lem2  22576  off2  32615  ofcf  34086  fsuppind  42571  clcllaw  48172
  Copyright terms: Public domain W3C validator