MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmscsscms Structured version   Visualization version   GIF version

Theorem cmscsscms 25419
Description: A closed subspace of a complete metric space which is also a subcomplex pre-Hilbert space is a complete metric space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized to arbitrary topological spaces (or at least topological modules), this assumption could be omitted. (Contributed by AV, 8-Oct-2022.)
Hypotheses
Ref Expression
cmslssbn.x 𝑋 = (𝑊s 𝑈)
cmscsscms.s 𝑆 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cmscsscms (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)

Proof of Theorem cmscsscms
StepHypRef Expression
1 cmslssbn.x . . 3 𝑋 = (𝑊s 𝑈)
2 cmsms 25394 . . . . 5 (𝑊 ∈ CMetSp → 𝑊 ∈ MetSp)
32adantr 480 . . . 4 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ MetSp)
4 ressms 24553 . . . 4 ((𝑊 ∈ MetSp ∧ 𝑈𝑆) → (𝑊s 𝑈) ∈ MetSp)
53, 4sylan 579 . . 3 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (𝑊s 𝑈) ∈ MetSp)
61, 5eqeltrid 2842 . 2 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ MetSp)
7 cphlmod 25220 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
87adantl 481 . . . . . . 7 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ LMod)
98adantr 480 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
10 cphphl 25217 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
1110adantl 481 . . . . . . 7 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ PreHil)
12 cmscsscms.s . . . . . . . 8 𝑆 = (ClSubSp‘𝑊)
13 eqid 2734 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1412, 13csslss 21727 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 ∈ (LSubSp‘𝑊))
1511, 14sylan 579 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 ∈ (LSubSp‘𝑊))
1613lsssubg 20973 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
179, 15, 16syl2anc 583 . . . . 5 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
181subgbas 19165 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
1917, 18syl 17 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
20 eqid 2734 . . . . . 6 (TopOpen‘𝑊) = (TopOpen‘𝑊)
2112, 20csscld 25295 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ∈ (Clsd‘(TopOpen‘𝑊)))
2221adantll 713 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 ∈ (Clsd‘(TopOpen‘𝑊)))
2319, 22eqeltrrd 2839 . . 3 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (Base‘𝑋) ∈ (Clsd‘(TopOpen‘𝑊)))
24 eqid 2734 . . . . . . . . . 10 (dist‘𝑊) = (dist‘𝑊)
251, 24ressds 17464 . . . . . . . . 9 (𝑈𝑆 → (dist‘𝑊) = (dist‘𝑋))
2625adantl 481 . . . . . . . 8 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (dist‘𝑊) = (dist‘𝑋))
2726eqcomd 2740 . . . . . . 7 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (dist‘𝑋) = (dist‘𝑊))
2827reseq1d 6007 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑊) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2919, 17eqeltrrd 2839 . . . . . . . . 9 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (Base‘𝑋) ∈ (SubGrp‘𝑊))
30 eqid 2734 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
3130subgss 19162 . . . . . . . . 9 ((Base‘𝑋) ∈ (SubGrp‘𝑊) → (Base‘𝑋) ⊆ (Base‘𝑊))
3229, 31syl 17 . . . . . . . 8 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (Base‘𝑋) ⊆ (Base‘𝑊))
33 xpss12 5714 . . . . . . . 8 (((Base‘𝑋) ⊆ (Base‘𝑊) ∧ (Base‘𝑋) ⊆ (Base‘𝑊)) → ((Base‘𝑋) × (Base‘𝑋)) ⊆ ((Base‘𝑊) × (Base‘𝑊)))
3432, 32, 33syl2anc 583 . . . . . . 7 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((Base‘𝑋) × (Base‘𝑋)) ⊆ ((Base‘𝑊) × (Base‘𝑊)))
3534resabs1d 6036 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑊) ↾ ((Base‘𝑋) × (Base‘𝑋))))
3628, 35eqtr4d 2777 . . . . 5 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))))
3736eleq1d 2823 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))))
38 eqid 2734 . . . . . . . 8 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
3930, 38cmscmet 25392 . . . . . . 7 (𝑊 ∈ CMetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊)))
4039adantr 480 . . . . . 6 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊)))
4140adantr 480 . . . . 5 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊)))
42 eqid 2734 . . . . . 6 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
4342cmetss 25362 . . . . 5 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊)) → ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈ (Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))))
4441, 43syl 17 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈ (Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))))
453adantr 480 . . . . . . . 8 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑊 ∈ MetSp)
4620, 30, 38mstopn 24476 . . . . . . . 8 (𝑊 ∈ MetSp → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
4745, 46syl 17 . . . . . . 7 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
4847eqcomd 2740 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (TopOpen‘𝑊))
4948fveq2d 6923 . . . . 5 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) = (Clsd‘(TopOpen‘𝑊)))
5049eleq2d 2824 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((Base‘𝑋) ∈ (Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ (Base‘𝑋) ∈ (Clsd‘(TopOpen‘𝑊))))
5137, 44, 503bitrd 305 . . 3 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈ (Clsd‘(TopOpen‘𝑊))))
5223, 51mpbird 257 . 2 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))
53 eqid 2734 . . 3 (Base‘𝑋) = (Base‘𝑋)
54 eqid 2734 . . 3 ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))
5553, 54iscms 25391 . 2 (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))))
566, 52, 55sylanbrc 582 1 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2103  wss 3970   × cxp 5697  cres 5701  cfv 6572  (class class class)co 7445  Basecbs 17253  s cress 17282  distcds 17315  TopOpenctopn 17476  SubGrpcsubg 19155  LModclmod 20875  LSubSpclss 20947  MetOpencmopn 21372  PreHilcphl 21660  ClSubSpccss 21697  Clsdccld 23038  MetSpcms 24342  ℂPreHilccph 25212  CMetccmet 25300  CMetSpccms 25378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258  ax-addf 11259  ax-mulf 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-om 7900  df-1st 8026  df-2nd 8027  df-supp 8198  df-tpos 8263  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-er 8759  df-map 8882  df-ixp 8952  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-fsupp 9428  df-fi 9476  df-sup 9507  df-inf 9508  df-oi 9575  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-z 12636  df-dec 12755  df-uz 12900  df-q 13010  df-rp 13054  df-xneg 13171  df-xadd 13172  df-xmul 13173  df-ico 13409  df-icc 13410  df-fz 13564  df-fzo 13708  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-starv 17321  df-sca 17322  df-vsca 17323  df-ip 17324  df-tset 17325  df-ple 17326  df-ds 17328  df-unif 17329  df-hom 17330  df-cco 17331  df-rest 17477  df-topn 17478  df-0g 17496  df-gsum 17497  df-topgen 17498  df-pt 17499  df-prds 17502  df-xrs 17557  df-qtop 17562  df-imas 17563  df-xps 17565  df-mre 17639  df-mrc 17640  df-acs 17642  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-mhm 18813  df-submnd 18814  df-grp 18971  df-minusg 18972  df-sbg 18973  df-mulg 19103  df-subg 19158  df-ghm 19248  df-cntz 19352  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-cring 20258  df-oppr 20355  df-dvdsr 20378  df-unit 20379  df-invr 20409  df-dvr 20422  df-rhm 20493  df-subrng 20567  df-subrg 20592  df-drng 20748  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-phl 21662  df-ipf 21663  df-ocv 21699  df-css 21700  df-top 22914  df-topon 22931  df-topsp 22953  df-bases 22967  df-cld 23041  df-ntr 23042  df-cls 23043  df-nei 23120  df-cn 23249  df-cnp 23250  df-t1 23336  df-haus 23337  df-tx 23584  df-hmeo 23777  df-fil 23868  df-flim 23961  df-xms 24344  df-ms 24345  df-tms 24346  df-nm 24609  df-ngp 24610  df-tng 24611  df-nlm 24613  df-clm 25108  df-cph 25214  df-tcph 25215  df-cfil 25301  df-cmet 25303  df-cms 25381
This theorem is referenced by:  bncssbn  25420
  Copyright terms: Public domain W3C validator