MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmscsscms Structured version   Visualization version   GIF version

Theorem cmscsscms 25432
Description: A closed subspace of a complete metric space which is also a subcomplex pre-Hilbert space is a complete metric space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized to arbitrary topological spaces (or at least topological modules), this assumption could be omitted. (Contributed by AV, 8-Oct-2022.)
Hypotheses
Ref Expression
cmslssbn.x 𝑋 = (𝑊s 𝑈)
cmscsscms.s 𝑆 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cmscsscms (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)

Proof of Theorem cmscsscms
StepHypRef Expression
1 cmslssbn.x . . 3 𝑋 = (𝑊s 𝑈)
2 cmsms 25407 . . . . 5 (𝑊 ∈ CMetSp → 𝑊 ∈ MetSp)
32adantr 480 . . . 4 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ MetSp)
4 ressms 24564 . . . 4 ((𝑊 ∈ MetSp ∧ 𝑈𝑆) → (𝑊s 𝑈) ∈ MetSp)
53, 4sylan 580 . . 3 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (𝑊s 𝑈) ∈ MetSp)
61, 5eqeltrid 2845 . 2 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ MetSp)
7 cphlmod 25233 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
87adantl 481 . . . . . . 7 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ LMod)
98adantr 480 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
10 cphphl 25230 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
1110adantl 481 . . . . . . 7 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ PreHil)
12 cmscsscms.s . . . . . . . 8 𝑆 = (ClSubSp‘𝑊)
13 eqid 2737 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1412, 13csslss 21736 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 ∈ (LSubSp‘𝑊))
1511, 14sylan 580 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 ∈ (LSubSp‘𝑊))
1613lsssubg 20982 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
179, 15, 16syl2anc 584 . . . . 5 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
181subgbas 19170 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
1917, 18syl 17 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
20 eqid 2737 . . . . . 6 (TopOpen‘𝑊) = (TopOpen‘𝑊)
2112, 20csscld 25308 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ∈ (Clsd‘(TopOpen‘𝑊)))
2221adantll 714 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 ∈ (Clsd‘(TopOpen‘𝑊)))
2319, 22eqeltrrd 2842 . . 3 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (Base‘𝑋) ∈ (Clsd‘(TopOpen‘𝑊)))
24 eqid 2737 . . . . . . . . . 10 (dist‘𝑊) = (dist‘𝑊)
251, 24ressds 17465 . . . . . . . . 9 (𝑈𝑆 → (dist‘𝑊) = (dist‘𝑋))
2625adantl 481 . . . . . . . 8 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (dist‘𝑊) = (dist‘𝑋))
2726eqcomd 2743 . . . . . . 7 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (dist‘𝑋) = (dist‘𝑊))
2827reseq1d 6003 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑊) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2919, 17eqeltrrd 2842 . . . . . . . . 9 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (Base‘𝑋) ∈ (SubGrp‘𝑊))
30 eqid 2737 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
3130subgss 19167 . . . . . . . . 9 ((Base‘𝑋) ∈ (SubGrp‘𝑊) → (Base‘𝑋) ⊆ (Base‘𝑊))
3229, 31syl 17 . . . . . . . 8 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (Base‘𝑋) ⊆ (Base‘𝑊))
33 xpss12 5708 . . . . . . . 8 (((Base‘𝑋) ⊆ (Base‘𝑊) ∧ (Base‘𝑋) ⊆ (Base‘𝑊)) → ((Base‘𝑋) × (Base‘𝑋)) ⊆ ((Base‘𝑊) × (Base‘𝑊)))
3432, 32, 33syl2anc 584 . . . . . . 7 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((Base‘𝑋) × (Base‘𝑋)) ⊆ ((Base‘𝑊) × (Base‘𝑊)))
3534resabs1d 6033 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑊) ↾ ((Base‘𝑋) × (Base‘𝑋))))
3628, 35eqtr4d 2780 . . . . 5 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))))
3736eleq1d 2826 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))))
38 eqid 2737 . . . . . . . 8 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
3930, 38cmscmet 25405 . . . . . . 7 (𝑊 ∈ CMetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊)))
4039adantr 480 . . . . . 6 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊)))
4140adantr 480 . . . . 5 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊)))
42 eqid 2737 . . . . . 6 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
4342cmetss 25375 . . . . 5 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊)) → ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈ (Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))))
4441, 43syl 17 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈ (Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))))
453adantr 480 . . . . . . . 8 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑊 ∈ MetSp)
4620, 30, 38mstopn 24487 . . . . . . . 8 (𝑊 ∈ MetSp → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
4745, 46syl 17 . . . . . . 7 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
4847eqcomd 2743 . . . . . 6 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (TopOpen‘𝑊))
4948fveq2d 6918 . . . . 5 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) = (Clsd‘(TopOpen‘𝑊)))
5049eleq2d 2827 . . . 4 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((Base‘𝑋) ∈ (Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ (Base‘𝑋) ∈ (Clsd‘(TopOpen‘𝑊))))
5137, 44, 503bitrd 305 . . 3 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈ (Clsd‘(TopOpen‘𝑊))))
5223, 51mpbird 257 . 2 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))
53 eqid 2737 . . 3 (Base‘𝑋) = (Base‘𝑋)
54 eqid 2737 . . 3 ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))
5553, 54iscms 25404 . 2 (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))))
566, 52, 55sylanbrc 583 1 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wss 3966   × cxp 5691  cres 5695  cfv 6569  (class class class)co 7438  Basecbs 17254  s cress 17283  distcds 17316  TopOpenctopn 17477  SubGrpcsubg 19160  LModclmod 20884  LSubSpclss 20956  MetOpencmopn 21381  PreHilcphl 21669  ClSubSpccss 21706  Clsdccld 23049  MetSpcms 24353  ℂPreHilccph 25225  CMetccmet 25313  CMetSpccms 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240  ax-addf 11241  ax-mulf 11242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-tpos 8259  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-fi 9458  df-sup 9489  df-inf 9490  df-oi 9557  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ico 13399  df-icc 13400  df-fz 13554  df-fzo 13701  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-rest 17478  df-topn 17479  df-0g 17497  df-gsum 17498  df-topgen 17499  df-pt 17500  df-prds 17503  df-xrs 17558  df-qtop 17563  df-imas 17564  df-xps 17566  df-mre 17640  df-mrc 17641  df-acs 17643  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20596  df-drng 20757  df-staf 20866  df-srng 20867  df-lmod 20886  df-lss 20957  df-lmhm 21048  df-lvec 21129  df-sra 21199  df-rgmod 21200  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-fbas 21388  df-fg 21389  df-cnfld 21392  df-phl 21671  df-ipf 21672  df-ocv 21708  df-css 21709  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-cld 23052  df-ntr 23053  df-cls 23054  df-nei 23131  df-cn 23260  df-cnp 23261  df-t1 23347  df-haus 23348  df-tx 23595  df-hmeo 23788  df-fil 23879  df-flim 23972  df-xms 24355  df-ms 24356  df-tms 24357  df-nm 24620  df-ngp 24621  df-tng 24622  df-nlm 24624  df-clm 25121  df-cph 25227  df-tcph 25228  df-cfil 25314  df-cmet 25316  df-cms 25394
This theorem is referenced by:  bncssbn  25433
  Copyright terms: Public domain W3C validator