Proof of Theorem cmscsscms
Step | Hyp | Ref
| Expression |
1 | | cmslssbn.x |
. . 3
⊢ 𝑋 = (𝑊 ↾s 𝑈) |
2 | | cmsms 24417 |
. . . . 5
⊢ (𝑊 ∈ CMetSp → 𝑊 ∈ MetSp) |
3 | 2 | adantr 480 |
. . . 4
⊢ ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) →
𝑊 ∈
MetSp) |
4 | | ressms 23588 |
. . . 4
⊢ ((𝑊 ∈ MetSp ∧ 𝑈 ∈ 𝑆) → (𝑊 ↾s 𝑈) ∈ MetSp) |
5 | 3, 4 | sylan 579 |
. . 3
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (𝑊 ↾s 𝑈) ∈ MetSp) |
6 | 1, 5 | eqeltrid 2843 |
. 2
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → 𝑋 ∈ MetSp) |
7 | | cphlmod 24243 |
. . . . . . . 8
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
LMod) |
8 | 7 | adantl 481 |
. . . . . . 7
⊢ ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) →
𝑊 ∈
LMod) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) |
10 | | cphphl 24240 |
. . . . . . . 8
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
PreHil) |
11 | 10 | adantl 481 |
. . . . . . 7
⊢ ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) →
𝑊 ∈
PreHil) |
12 | | cmscsscms.s |
. . . . . . . 8
⊢ 𝑆 = (ClSubSp‘𝑊) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
14 | 12, 13 | csslss 20808 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
15 | 11, 14 | sylan 579 |
. . . . . 6
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
16 | 13 | lsssubg 20134 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
17 | 9, 15, 16 | syl2anc 583 |
. . . . 5
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
18 | 1 | subgbas 18674 |
. . . . 5
⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
19 | 17, 18 | syl 17 |
. . . 4
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
20 | | eqid 2738 |
. . . . . 6
⊢
(TopOpen‘𝑊) =
(TopOpen‘𝑊) |
21 | 12, 20 | csscld 24318 |
. . . . 5
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑈 ∈ 𝑆) → 𝑈 ∈ (Clsd‘(TopOpen‘𝑊))) |
22 | 21 | adantll 710 |
. . . 4
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → 𝑈 ∈ (Clsd‘(TopOpen‘𝑊))) |
23 | 19, 22 | eqeltrrd 2840 |
. . 3
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (Base‘𝑋) ∈ (Clsd‘(TopOpen‘𝑊))) |
24 | | eqid 2738 |
. . . . . . . . . 10
⊢
(dist‘𝑊) =
(dist‘𝑊) |
25 | 1, 24 | ressds 17039 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝑆 → (dist‘𝑊) = (dist‘𝑋)) |
26 | 25 | adantl 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (dist‘𝑊) = (dist‘𝑋)) |
27 | 26 | eqcomd 2744 |
. . . . . . 7
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (dist‘𝑋) = (dist‘𝑊)) |
28 | 27 | reseq1d 5879 |
. . . . . 6
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑊) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
29 | 19, 17 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (Base‘𝑋) ∈ (SubGrp‘𝑊)) |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑊) =
(Base‘𝑊) |
31 | 30 | subgss 18671 |
. . . . . . . . 9
⊢
((Base‘𝑋)
∈ (SubGrp‘𝑊)
→ (Base‘𝑋)
⊆ (Base‘𝑊)) |
32 | 29, 31 | syl 17 |
. . . . . . . 8
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (Base‘𝑋) ⊆ (Base‘𝑊)) |
33 | | xpss12 5595 |
. . . . . . . 8
⊢
(((Base‘𝑋)
⊆ (Base‘𝑊)
∧ (Base‘𝑋)
⊆ (Base‘𝑊))
→ ((Base‘𝑋)
× (Base‘𝑋))
⊆ ((Base‘𝑊)
× (Base‘𝑊))) |
34 | 32, 32, 33 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → ((Base‘𝑋) × (Base‘𝑋)) ⊆ ((Base‘𝑊) × (Base‘𝑊))) |
35 | 34 | resabs1d 5911 |
. . . . . 6
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑊) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
36 | 28, 35 | eqtr4d 2781 |
. . . . 5
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
37 | 36 | eleq1d 2823 |
. . . 4
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈
(CMet‘(Base‘𝑋)))) |
38 | | eqid 2738 |
. . . . . . . 8
⊢
((dist‘𝑊)
↾ ((Base‘𝑊)
× (Base‘𝑊))) =
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) |
39 | 30, 38 | cmscmet 24415 |
. . . . . . 7
⊢ (𝑊 ∈ CMetSp →
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) ∈
(CMet‘(Base‘𝑊))) |
40 | 39 | adantr 480 |
. . . . . 6
⊢ ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) →
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) ∈
(CMet‘(Base‘𝑊))) |
41 | 40 | adantr 480 |
. . . . 5
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (CMet‘(Base‘𝑊))) |
42 | | eqid 2738 |
. . . . . 6
⊢
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) |
43 | 42 | cmetss 24385 |
. . . . 5
⊢
(((dist‘𝑊)
↾ ((Base‘𝑊)
× (Base‘𝑊)))
∈ (CMet‘(Base‘𝑊)) → ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈
(Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))) |
44 | 41, 43 | syl 17 |
. . . 4
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈
(Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))) |
45 | 3 | adantr 480 |
. . . . . . . 8
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → 𝑊 ∈ MetSp) |
46 | 20, 30, 38 | mstopn 23513 |
. . . . . . . 8
⊢ (𝑊 ∈ MetSp →
(TopOpen‘𝑊) =
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) |
47 | 45, 46 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) |
48 | 47 | eqcomd 2744 |
. . . . . 6
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (TopOpen‘𝑊)) |
49 | 48 | fveq2d 6760 |
. . . . 5
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) →
(Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) = (Clsd‘(TopOpen‘𝑊))) |
50 | 49 | eleq2d 2824 |
. . . 4
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → ((Base‘𝑋) ∈
(Clsd‘(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ (Base‘𝑋) ∈ (Clsd‘(TopOpen‘𝑊)))) |
51 | 37, 44, 50 | 3bitrd 304 |
. . 3
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → (((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)) ↔ (Base‘𝑋) ∈
(Clsd‘(TopOpen‘𝑊)))) |
52 | 23, 51 | mpbird 256 |
. 2
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))) |
53 | | eqid 2738 |
. . 3
⊢
(Base‘𝑋) =
(Base‘𝑋) |
54 | | eqid 2738 |
. . 3
⊢
((dist‘𝑋)
↾ ((Base‘𝑋)
× (Base‘𝑋))) =
((dist‘𝑋) ↾
((Base‘𝑋) ×
(Base‘𝑋))) |
55 | 53, 54 | iscms 24414 |
. 2
⊢ (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧
((dist‘𝑋) ↾
((Base‘𝑋) ×
(Base‘𝑋))) ∈
(CMet‘(Base‘𝑋)))) |
56 | 6, 52, 55 | sylanbrc 582 |
1
⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧
𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) |