MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3a Structured version   Visualization version   GIF version

Theorem minveclem3a 25355
Description: Lemma for minvec 25364. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem3a (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝐷   𝑦,𝑆

Proof of Theorem minveclem3a
StepHypRef Expression
1 minvec.w . . 3 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
2 eqid 2733 . . . 4 (Base‘(𝑈s 𝑌)) = (Base‘(𝑈s 𝑌))
3 eqid 2733 . . . 4 ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
42, 3cmscmet 25274 . . 3 ((𝑈s 𝑌) ∈ CMetSp → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
51, 4syl 17 . 2 (𝜑 → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
6 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
76reseq1i 5928 . . 3 (𝐷 ↾ (𝑌 × 𝑌)) = (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌))
8 minvec.y . . . . . . 7 (𝜑𝑌 ∈ (LSubSp‘𝑈))
9 minvec.x . . . . . . . 8 𝑋 = (Base‘𝑈)
10 eqid 2733 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
119, 10lssss 20871 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
128, 11syl 17 . . . . . 6 (𝜑𝑌𝑋)
13 xpss12 5634 . . . . . 6 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1412, 12, 13syl2anc 584 . . . . 5 (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1514resabs1d 5961 . . . 4 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘𝑈) ↾ (𝑌 × 𝑌)))
16 eqid 2733 . . . . . . 7 (𝑈s 𝑌) = (𝑈s 𝑌)
17 eqid 2733 . . . . . . 7 (dist‘𝑈) = (dist‘𝑈)
1816, 17ressds 17316 . . . . . 6 (𝑌 ∈ (LSubSp‘𝑈) → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
198, 18syl 17 . . . . 5 (𝜑 → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
2016, 9ressbas2 17151 . . . . . . 7 (𝑌𝑋𝑌 = (Base‘(𝑈s 𝑌)))
2112, 20syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(𝑈s 𝑌)))
2221sqxpeqd 5651 . . . . 5 (𝜑 → (𝑌 × 𝑌) = ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
2319, 22reseq12d 5933 . . . 4 (𝜑 → ((dist‘𝑈) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2415, 23eqtrd 2768 . . 3 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
257, 24eqtrid 2780 . 2 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2621fveq2d 6832 . 2 (𝜑 → (CMet‘𝑌) = (CMet‘(Base‘(𝑈s 𝑌))))
275, 25, 263eltr4d 2848 1 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898  cmpt 5174   × cxp 5617  ran crn 5620  cres 5621  cfv 6486  (class class class)co 7352  infcinf 9332  cr 11012   < clt 11153  Basecbs 17122  s cress 17143  distcds 17172  TopOpenctopn 17327  -gcsg 18850  LSubSpclss 20866  normcnm 24492  ℂPreHilccph 25094  CMetccmet 25182  CMetSpccms 25260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-ds 17185  df-lss 20867  df-cms 25263
This theorem is referenced by:  minveclem3  25357  minveclem4a  25358
  Copyright terms: Public domain W3C validator