![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveclem3a | Structured version Visualization version GIF version |
Description: Lemma for minvec 25489. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minvec.d | ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
minveclem3a | ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.w | . . 3 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
2 | eqid 2740 | . . . 4 ⊢ (Base‘(𝑈 ↾s 𝑌)) = (Base‘(𝑈 ↾s 𝑌)) | |
3 | eqid 2740 | . . . 4 ⊢ ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) | |
4 | 2, 3 | cmscmet 25399 | . . 3 ⊢ ((𝑈 ↾s 𝑌) ∈ CMetSp → ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) ∈ (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) ∈ (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
6 | minvec.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
7 | 6 | reseq1i 6005 | . . 3 ⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) |
8 | minvec.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
9 | minvec.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝑈) | |
10 | eqid 2740 | . . . . . . . 8 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
11 | 9, 10 | lssss 20957 | . . . . . . 7 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
12 | 8, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
13 | xpss12 5715 | . . . . . 6 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) | |
14 | 12, 12, 13 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
15 | 14 | resabs1d 6037 | . . . 4 ⊢ (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘𝑈) ↾ (𝑌 × 𝑌))) |
16 | eqid 2740 | . . . . . . 7 ⊢ (𝑈 ↾s 𝑌) = (𝑈 ↾s 𝑌) | |
17 | eqid 2740 | . . . . . . 7 ⊢ (dist‘𝑈) = (dist‘𝑈) | |
18 | 16, 17 | ressds 17469 | . . . . . 6 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → (dist‘𝑈) = (dist‘(𝑈 ↾s 𝑌))) |
19 | 8, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (dist‘𝑈) = (dist‘(𝑈 ↾s 𝑌))) |
20 | 16, 9 | ressbas2 17296 | . . . . . . 7 ⊢ (𝑌 ⊆ 𝑋 → 𝑌 = (Base‘(𝑈 ↾s 𝑌))) |
21 | 12, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 = (Base‘(𝑈 ↾s 𝑌))) |
22 | 21 | sqxpeqd 5732 | . . . . 5 ⊢ (𝜑 → (𝑌 × 𝑌) = ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) |
23 | 19, 22 | reseq12d 6010 | . . . 4 ⊢ (𝜑 → ((dist‘𝑈) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
24 | 15, 23 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
25 | 7, 24 | eqtrid 2792 | . 2 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
26 | 21 | fveq2d 6924 | . 2 ⊢ (𝜑 → (CMet‘𝑌) = (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
27 | 5, 25, 26 | 3eltr4d 2859 | 1 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ↦ cmpt 5249 × cxp 5698 ran crn 5701 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 infcinf 9510 ℝcr 11183 < clt 11324 Basecbs 17258 ↾s cress 17287 distcds 17320 TopOpenctopn 17481 -gcsg 18975 LSubSpclss 20952 normcnm 24610 ℂPreHilccph 25219 CMetccmet 25307 CMetSpccms 25385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-ds 17333 df-lss 20953 df-cms 25388 |
This theorem is referenced by: minveclem3 25482 minveclem4a 25483 |
Copyright terms: Public domain | W3C validator |