| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem3a | Structured version Visualization version GIF version | ||
| Description: Lemma for minvec 25470. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
| minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| minvec.d | ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| minveclem3a | ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.w | . . 3 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
| 2 | eqid 2737 | . . . 4 ⊢ (Base‘(𝑈 ↾s 𝑌)) = (Base‘(𝑈 ↾s 𝑌)) | |
| 3 | eqid 2737 | . . . 4 ⊢ ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) | |
| 4 | 2, 3 | cmscmet 25380 | . . 3 ⊢ ((𝑈 ↾s 𝑌) ∈ CMetSp → ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) ∈ (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) ∈ (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
| 6 | minvec.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
| 7 | 6 | reseq1i 5993 | . . 3 ⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) |
| 8 | minvec.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 9 | minvec.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝑈) | |
| 10 | eqid 2737 | . . . . . . . 8 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 11 | 9, 10 | lssss 20934 | . . . . . . 7 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 12 | 8, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 13 | xpss12 5700 | . . . . . 6 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) | |
| 14 | 12, 12, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
| 15 | 14 | resabs1d 6026 | . . . 4 ⊢ (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘𝑈) ↾ (𝑌 × 𝑌))) |
| 16 | eqid 2737 | . . . . . . 7 ⊢ (𝑈 ↾s 𝑌) = (𝑈 ↾s 𝑌) | |
| 17 | eqid 2737 | . . . . . . 7 ⊢ (dist‘𝑈) = (dist‘𝑈) | |
| 18 | 16, 17 | ressds 17454 | . . . . . 6 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → (dist‘𝑈) = (dist‘(𝑈 ↾s 𝑌))) |
| 19 | 8, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (dist‘𝑈) = (dist‘(𝑈 ↾s 𝑌))) |
| 20 | 16, 9 | ressbas2 17283 | . . . . . . 7 ⊢ (𝑌 ⊆ 𝑋 → 𝑌 = (Base‘(𝑈 ↾s 𝑌))) |
| 21 | 12, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 = (Base‘(𝑈 ↾s 𝑌))) |
| 22 | 21 | sqxpeqd 5717 | . . . . 5 ⊢ (𝜑 → (𝑌 × 𝑌) = ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) |
| 23 | 19, 22 | reseq12d 5998 | . . . 4 ⊢ (𝜑 → ((dist‘𝑈) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
| 24 | 15, 23 | eqtrd 2777 | . . 3 ⊢ (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
| 25 | 7, 24 | eqtrid 2789 | . 2 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
| 26 | 21 | fveq2d 6910 | . 2 ⊢ (𝜑 → (CMet‘𝑌) = (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
| 27 | 5, 25, 26 | 3eltr4d 2856 | 1 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ↦ cmpt 5225 × cxp 5683 ran crn 5686 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 infcinf 9481 ℝcr 11154 < clt 11295 Basecbs 17247 ↾s cress 17274 distcds 17306 TopOpenctopn 17466 -gcsg 18953 LSubSpclss 20929 normcnm 24589 ℂPreHilccph 25200 CMetccmet 25288 CMetSpccms 25366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-ds 17319 df-lss 20930 df-cms 25369 |
| This theorem is referenced by: minveclem3 25463 minveclem4a 25464 |
| Copyright terms: Public domain | W3C validator |