MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3a Structured version   Visualization version   GIF version

Theorem minveclem3a 25327
Description: Lemma for minvec 25336. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem3a (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝐷   𝑦,𝑆

Proof of Theorem minveclem3a
StepHypRef Expression
1 minvec.w . . 3 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
2 eqid 2729 . . . 4 (Base‘(𝑈s 𝑌)) = (Base‘(𝑈s 𝑌))
3 eqid 2729 . . . 4 ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
42, 3cmscmet 25246 . . 3 ((𝑈s 𝑌) ∈ CMetSp → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
51, 4syl 17 . 2 (𝜑 → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
6 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
76reseq1i 5946 . . 3 (𝐷 ↾ (𝑌 × 𝑌)) = (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌))
8 minvec.y . . . . . . 7 (𝜑𝑌 ∈ (LSubSp‘𝑈))
9 minvec.x . . . . . . . 8 𝑋 = (Base‘𝑈)
10 eqid 2729 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
119, 10lssss 20842 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
128, 11syl 17 . . . . . 6 (𝜑𝑌𝑋)
13 xpss12 5653 . . . . . 6 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1412, 12, 13syl2anc 584 . . . . 5 (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1514resabs1d 5979 . . . 4 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘𝑈) ↾ (𝑌 × 𝑌)))
16 eqid 2729 . . . . . . 7 (𝑈s 𝑌) = (𝑈s 𝑌)
17 eqid 2729 . . . . . . 7 (dist‘𝑈) = (dist‘𝑈)
1816, 17ressds 17373 . . . . . 6 (𝑌 ∈ (LSubSp‘𝑈) → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
198, 18syl 17 . . . . 5 (𝜑 → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
2016, 9ressbas2 17208 . . . . . . 7 (𝑌𝑋𝑌 = (Base‘(𝑈s 𝑌)))
2112, 20syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(𝑈s 𝑌)))
2221sqxpeqd 5670 . . . . 5 (𝜑 → (𝑌 × 𝑌) = ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
2319, 22reseq12d 5951 . . . 4 (𝜑 → ((dist‘𝑈) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2415, 23eqtrd 2764 . . 3 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
257, 24eqtrid 2776 . 2 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2621fveq2d 6862 . 2 (𝜑 → (CMet‘𝑌) = (CMet‘(Base‘(𝑈s 𝑌))))
275, 25, 263eltr4d 2843 1 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  cmpt 5188   × cxp 5636  ran crn 5639  cres 5640  cfv 6511  (class class class)co 7387  infcinf 9392  cr 11067   < clt 11208  Basecbs 17179  s cress 17200  distcds 17229  TopOpenctopn 17384  -gcsg 18867  LSubSpclss 20837  normcnm 24464  ℂPreHilccph 25066  CMetccmet 25154  CMetSpccms 25232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-ds 17242  df-lss 20838  df-cms 25235
This theorem is referenced by:  minveclem3  25329  minveclem4a  25330
  Copyright terms: Public domain W3C validator