| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem3a | Structured version Visualization version GIF version | ||
| Description: Lemma for minvec 25388. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
| minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| minvec.d | ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| minveclem3a | ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.w | . . 3 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
| 2 | eqid 2735 | . . . 4 ⊢ (Base‘(𝑈 ↾s 𝑌)) = (Base‘(𝑈 ↾s 𝑌)) | |
| 3 | eqid 2735 | . . . 4 ⊢ ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) | |
| 4 | 2, 3 | cmscmet 25298 | . . 3 ⊢ ((𝑈 ↾s 𝑌) ∈ CMetSp → ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) ∈ (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) ∈ (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
| 6 | minvec.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
| 7 | 6 | reseq1i 5962 | . . 3 ⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) |
| 8 | minvec.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 9 | minvec.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝑈) | |
| 10 | eqid 2735 | . . . . . . . 8 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 11 | 9, 10 | lssss 20893 | . . . . . . 7 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 12 | 8, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 13 | xpss12 5669 | . . . . . 6 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) | |
| 14 | 12, 12, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
| 15 | 14 | resabs1d 5995 | . . . 4 ⊢ (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘𝑈) ↾ (𝑌 × 𝑌))) |
| 16 | eqid 2735 | . . . . . . 7 ⊢ (𝑈 ↾s 𝑌) = (𝑈 ↾s 𝑌) | |
| 17 | eqid 2735 | . . . . . . 7 ⊢ (dist‘𝑈) = (dist‘𝑈) | |
| 18 | 16, 17 | ressds 17424 | . . . . . 6 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → (dist‘𝑈) = (dist‘(𝑈 ↾s 𝑌))) |
| 19 | 8, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (dist‘𝑈) = (dist‘(𝑈 ↾s 𝑌))) |
| 20 | 16, 9 | ressbas2 17259 | . . . . . . 7 ⊢ (𝑌 ⊆ 𝑋 → 𝑌 = (Base‘(𝑈 ↾s 𝑌))) |
| 21 | 12, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 = (Base‘(𝑈 ↾s 𝑌))) |
| 22 | 21 | sqxpeqd 5686 | . . . . 5 ⊢ (𝜑 → (𝑌 × 𝑌) = ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌)))) |
| 23 | 19, 22 | reseq12d 5967 | . . . 4 ⊢ (𝜑 → ((dist‘𝑈) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
| 24 | 15, 23 | eqtrd 2770 | . . 3 ⊢ (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
| 25 | 7, 24 | eqtrid 2782 | . 2 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈 ↾s 𝑌)) ↾ ((Base‘(𝑈 ↾s 𝑌)) × (Base‘(𝑈 ↾s 𝑌))))) |
| 26 | 21 | fveq2d 6880 | . 2 ⊢ (𝜑 → (CMet‘𝑌) = (CMet‘(Base‘(𝑈 ↾s 𝑌)))) |
| 27 | 5, 25, 26 | 3eltr4d 2849 | 1 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ↦ cmpt 5201 × cxp 5652 ran crn 5655 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 infcinf 9453 ℝcr 11128 < clt 11269 Basecbs 17228 ↾s cress 17251 distcds 17280 TopOpenctopn 17435 -gcsg 18918 LSubSpclss 20888 normcnm 24515 ℂPreHilccph 25118 CMetccmet 25206 CMetSpccms 25284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-ds 17293 df-lss 20889 df-cms 25287 |
| This theorem is referenced by: minveclem3 25381 minveclem4a 25382 |
| Copyright terms: Public domain | W3C validator |