![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveclem3a | Structured version Visualization version GIF version |
Description: Lemma for minvec 25185. π· is a complete metric when restricted to π. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | β’ π = (Baseβπ) |
minvec.m | β’ β = (-gβπ) |
minvec.n | β’ π = (normβπ) |
minvec.u | β’ (π β π β βPreHil) |
minvec.y | β’ (π β π β (LSubSpβπ)) |
minvec.w | β’ (π β (π βΎs π) β CMetSp) |
minvec.a | β’ (π β π΄ β π) |
minvec.j | β’ π½ = (TopOpenβπ) |
minvec.r | β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) |
minvec.s | β’ π = inf(π , β, < ) |
minvec.d | β’ π· = ((distβπ) βΎ (π Γ π)) |
Ref | Expression |
---|---|
minveclem3a | β’ (π β (π· βΎ (π Γ π)) β (CMetβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.w | . . 3 β’ (π β (π βΎs π) β CMetSp) | |
2 | eqid 2731 | . . . 4 β’ (Baseβ(π βΎs π)) = (Baseβ(π βΎs π)) | |
3 | eqid 2731 | . . . 4 β’ ((distβ(π βΎs π)) βΎ ((Baseβ(π βΎs π)) Γ (Baseβ(π βΎs π)))) = ((distβ(π βΎs π)) βΎ ((Baseβ(π βΎs π)) Γ (Baseβ(π βΎs π)))) | |
4 | 2, 3 | cmscmet 25095 | . . 3 β’ ((π βΎs π) β CMetSp β ((distβ(π βΎs π)) βΎ ((Baseβ(π βΎs π)) Γ (Baseβ(π βΎs π)))) β (CMetβ(Baseβ(π βΎs π)))) |
5 | 1, 4 | syl 17 | . 2 β’ (π β ((distβ(π βΎs π)) βΎ ((Baseβ(π βΎs π)) Γ (Baseβ(π βΎs π)))) β (CMetβ(Baseβ(π βΎs π)))) |
6 | minvec.d | . . . 4 β’ π· = ((distβπ) βΎ (π Γ π)) | |
7 | 6 | reseq1i 5977 | . . 3 β’ (π· βΎ (π Γ π)) = (((distβπ) βΎ (π Γ π)) βΎ (π Γ π)) |
8 | minvec.y | . . . . . . 7 β’ (π β π β (LSubSpβπ)) | |
9 | minvec.x | . . . . . . . 8 β’ π = (Baseβπ) | |
10 | eqid 2731 | . . . . . . . 8 β’ (LSubSpβπ) = (LSubSpβπ) | |
11 | 9, 10 | lssss 20692 | . . . . . . 7 β’ (π β (LSubSpβπ) β π β π) |
12 | 8, 11 | syl 17 | . . . . . 6 β’ (π β π β π) |
13 | xpss12 5691 | . . . . . 6 β’ ((π β π β§ π β π) β (π Γ π) β (π Γ π)) | |
14 | 12, 12, 13 | syl2anc 583 | . . . . 5 β’ (π β (π Γ π) β (π Γ π)) |
15 | 14 | resabs1d 6012 | . . . 4 β’ (π β (((distβπ) βΎ (π Γ π)) βΎ (π Γ π)) = ((distβπ) βΎ (π Γ π))) |
16 | eqid 2731 | . . . . . . 7 β’ (π βΎs π) = (π βΎs π) | |
17 | eqid 2731 | . . . . . . 7 β’ (distβπ) = (distβπ) | |
18 | 16, 17 | ressds 17360 | . . . . . 6 β’ (π β (LSubSpβπ) β (distβπ) = (distβ(π βΎs π))) |
19 | 8, 18 | syl 17 | . . . . 5 β’ (π β (distβπ) = (distβ(π βΎs π))) |
20 | 16, 9 | ressbas2 17187 | . . . . . . 7 β’ (π β π β π = (Baseβ(π βΎs π))) |
21 | 12, 20 | syl 17 | . . . . . 6 β’ (π β π = (Baseβ(π βΎs π))) |
22 | 21 | sqxpeqd 5708 | . . . . 5 β’ (π β (π Γ π) = ((Baseβ(π βΎs π)) Γ (Baseβ(π βΎs π)))) |
23 | 19, 22 | reseq12d 5982 | . . . 4 β’ (π β ((distβπ) βΎ (π Γ π)) = ((distβ(π βΎs π)) βΎ ((Baseβ(π βΎs π)) Γ (Baseβ(π βΎs π))))) |
24 | 15, 23 | eqtrd 2771 | . . 3 β’ (π β (((distβπ) βΎ (π Γ π)) βΎ (π Γ π)) = ((distβ(π βΎs π)) βΎ ((Baseβ(π βΎs π)) Γ (Baseβ(π βΎs π))))) |
25 | 7, 24 | eqtrid 2783 | . 2 β’ (π β (π· βΎ (π Γ π)) = ((distβ(π βΎs π)) βΎ ((Baseβ(π βΎs π)) Γ (Baseβ(π βΎs π))))) |
26 | 21 | fveq2d 6895 | . 2 β’ (π β (CMetβπ) = (CMetβ(Baseβ(π βΎs π)))) |
27 | 5, 25, 26 | 3eltr4d 2847 | 1 β’ (π β (π· βΎ (π Γ π)) β (CMetβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wss 3948 β¦ cmpt 5231 Γ cxp 5674 ran crn 5677 βΎ cres 5678 βcfv 6543 (class class class)co 7412 infcinf 9440 βcr 11113 < clt 11253 Basecbs 17149 βΎs cress 17178 distcds 17211 TopOpenctopn 17372 -gcsg 18858 LSubSpclss 20687 normcnm 24306 βPreHilccph 24915 CMetccmet 25003 CMetSpccms 25081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-ds 17224 df-lss 20688 df-cms 25084 |
This theorem is referenced by: minveclem3 25178 minveclem4a 25179 |
Copyright terms: Public domain | W3C validator |