| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmsss | Structured version Visualization version GIF version | ||
| Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| cmsss.h | ⊢ 𝐾 = (𝑀 ↾s 𝐴) |
| cmsss.x | ⊢ 𝑋 = (Base‘𝑀) |
| cmsss.j | ⊢ 𝐽 = (TopOpen‘𝑀) |
| Ref | Expression |
|---|---|
| cmsss | ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 2 | xpss12 5674 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) | |
| 3 | 1, 2 | sylancom 588 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 4 | 3 | resabs1d 6000 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴))) |
| 5 | cmsss.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑀) | |
| 6 | 5 | fvexi 6895 | . . . . . . . . 9 ⊢ 𝑋 ∈ V |
| 7 | 6 | ssex 5296 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ∈ V) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 9 | cmsss.h | . . . . . . . 8 ⊢ 𝐾 = (𝑀 ↾s 𝐴) | |
| 10 | eqid 2736 | . . . . . . . 8 ⊢ (dist‘𝑀) = (dist‘𝑀) | |
| 11 | 9, 10 | ressds 17429 | . . . . . . 7 ⊢ (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾)) |
| 12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
| 13 | 9, 5 | ressbas2 17264 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 = (Base‘𝐾)) |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 = (Base‘𝐾)) |
| 15 | 14 | sqxpeqd 5691 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾))) |
| 16 | 12, 15 | reseq12d 5972 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 17 | 4, 16 | eqtrd 2771 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 18 | 14 | fveq2d 6885 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾))) |
| 19 | 17, 18 | eleq12d 2829 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 20 | eqid 2736 | . . . . . 6 ⊢ ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
| 21 | 5, 20 | cmscmet 25303 | . . . . 5 ⊢ (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
| 23 | eqid 2736 | . . . . 5 ⊢ (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
| 24 | 23 | cmetss 25273 | . . . 4 ⊢ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 25 | 22, 24 | syl 17 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 26 | 19, 25 | bitr3d 281 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 27 | cmsms 25305 | . . . 4 ⊢ (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp) | |
| 28 | ressms 24470 | . . . . 5 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀 ↾s 𝐴) ∈ MetSp) | |
| 29 | 9, 28 | eqeltrid 2839 | . . . 4 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp) |
| 30 | 27, 7, 29 | syl2an 596 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ MetSp) |
| 31 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 32 | eqid 2736 | . . . . 5 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 33 | 31, 32 | iscms 25302 | . . . 4 ⊢ (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 34 | 33 | baib 535 | . . 3 ⊢ (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 35 | 30, 34 | syl 17 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 36 | 27 | adantr 480 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝑀 ∈ MetSp) |
| 37 | cmsss.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑀) | |
| 38 | 37, 5, 20 | mstopn 24396 | . . . . 5 ⊢ (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 39 | 36, 38 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 40 | 39 | fveq2d 6885 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
| 41 | 40 | eleq2d 2821 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 42 | 26, 35, 41 | 3bitr4d 311 | 1 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 × cxp 5657 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 distcds 17285 TopOpenctopn 17440 MetOpencmopn 21310 Clsdccld 22959 MetSpcms 24262 CMetccmet 25211 CMetSpccms 25289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ico 13373 df-icc 13374 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-tset 17295 df-ds 17298 df-rest 17441 df-topn 17442 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-haus 23258 df-fil 23789 df-flim 23882 df-xms 24264 df-ms 24265 df-cfil 25212 df-cmet 25214 df-cms 25292 |
| This theorem is referenced by: lssbn 25309 resscdrg 25315 srabn 25317 ishl2 25327 recms 25337 pjthlem2 25395 |
| Copyright terms: Public domain | W3C validator |