MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsss Structured version   Visualization version   GIF version

Theorem cmsss 25386
Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmsss ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽)))

Proof of Theorem cmsss
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴𝑋)
2 xpss12 5699 . . . . . . 7 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
31, 2sylancom 588 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
43resabs1d 6025 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
5 cmsss.x . . . . . . . . . 10 𝑋 = (Base‘𝑀)
65fvexi 6919 . . . . . . . . 9 𝑋 ∈ V
76ssex 5320 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
87adantl 481 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
10 eqid 2736 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
119, 10ressds 17455 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
128, 11syl 17 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (dist‘𝑀) = (dist‘𝐾))
139, 5ressbas2 17284 . . . . . . . 8 (𝐴𝑋𝐴 = (Base‘𝐾))
1413adantl 481 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴 = (Base‘𝐾))
1514sqxpeqd 5716 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾)))
1612, 15reseq12d 5997 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
174, 16eqtrd 2776 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
1814fveq2d 6909 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾)))
1917, 18eleq12d 2834 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
20 eqid 2736 . . . . . 6 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
215, 20cmscmet 25381 . . . . 5 (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋))
2221adantr 480 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋))
23 eqid 2736 . . . . 5 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
2423cmetss 25351 . . . 4 (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
2522, 24syl 17 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
2619, 25bitr3d 281 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
27 cmsms 25383 . . . 4 (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp)
28 ressms 24540 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀s 𝐴) ∈ MetSp)
299, 28eqeltrid 2844 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp)
3027, 7, 29syl2an 596 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐾 ∈ MetSp)
31 eqid 2736 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2736 . . . . 5 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
3331, 32iscms 25380 . . . 4 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3433baib 535 . . 3 (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3530, 34syl 17 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3627adantr 480 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝑀 ∈ MetSp)
37 cmsss.j . . . . . 6 𝐽 = (TopOpen‘𝑀)
3837, 5, 20mstopn 24463 . . . . 5 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
3936, 38syl 17 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4039fveq2d 6909 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4140eleq2d 2826 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
4226, 35, 413bitr4d 311 1 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  wss 3950   × cxp 5682  cres 5686  cfv 6560  (class class class)co 7432  Basecbs 17248  s cress 17275  distcds 17307  TopOpenctopn 17467  MetOpencmopn 21355  Clsdccld 23025  MetSpcms 24329  CMetccmet 25289  CMetSpccms 25367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ico 13394  df-icc 13395  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-tset 17317  df-ds 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-haus 23324  df-fil 23855  df-flim 23948  df-xms 24331  df-ms 24332  df-cfil 25290  df-cmet 25292  df-cms 25370
This theorem is referenced by:  lssbn  25387  resscdrg  25393  srabn  25395  ishl2  25405  recms  25415  pjthlem2  25473
  Copyright terms: Public domain W3C validator