| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmsss | Structured version Visualization version GIF version | ||
| Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| cmsss.h | ⊢ 𝐾 = (𝑀 ↾s 𝐴) |
| cmsss.x | ⊢ 𝑋 = (Base‘𝑀) |
| cmsss.j | ⊢ 𝐽 = (TopOpen‘𝑀) |
| Ref | Expression |
|---|---|
| cmsss | ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 2 | xpss12 5634 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) | |
| 3 | 1, 2 | sylancom 588 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 4 | 3 | resabs1d 5959 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴))) |
| 5 | cmsss.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑀) | |
| 6 | 5 | fvexi 6836 | . . . . . . . . 9 ⊢ 𝑋 ∈ V |
| 7 | 6 | ssex 5260 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ∈ V) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 9 | cmsss.h | . . . . . . . 8 ⊢ 𝐾 = (𝑀 ↾s 𝐴) | |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (dist‘𝑀) = (dist‘𝑀) | |
| 11 | 9, 10 | ressds 17314 | . . . . . . 7 ⊢ (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾)) |
| 12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
| 13 | 9, 5 | ressbas2 17149 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 = (Base‘𝐾)) |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 = (Base‘𝐾)) |
| 15 | 14 | sqxpeqd 5651 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾))) |
| 16 | 12, 15 | reseq12d 5931 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 17 | 4, 16 | eqtrd 2764 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 18 | 14 | fveq2d 6826 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾))) |
| 19 | 17, 18 | eleq12d 2822 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 20 | eqid 2729 | . . . . . 6 ⊢ ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
| 21 | 5, 20 | cmscmet 25244 | . . . . 5 ⊢ (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
| 23 | eqid 2729 | . . . . 5 ⊢ (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
| 24 | 23 | cmetss 25214 | . . . 4 ⊢ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 25 | 22, 24 | syl 17 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 26 | 19, 25 | bitr3d 281 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 27 | cmsms 25246 | . . . 4 ⊢ (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp) | |
| 28 | ressms 24412 | . . . . 5 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀 ↾s 𝐴) ∈ MetSp) | |
| 29 | 9, 28 | eqeltrid 2832 | . . . 4 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp) |
| 30 | 27, 7, 29 | syl2an 596 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ MetSp) |
| 31 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 32 | eqid 2729 | . . . . 5 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 33 | 31, 32 | iscms 25243 | . . . 4 ⊢ (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 34 | 33 | baib 535 | . . 3 ⊢ (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 35 | 30, 34 | syl 17 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 36 | 27 | adantr 480 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝑀 ∈ MetSp) |
| 37 | cmsss.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑀) | |
| 38 | 37, 5, 20 | mstopn 24338 | . . . . 5 ⊢ (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 39 | 36, 38 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 40 | 39 | fveq2d 6826 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
| 41 | 40 | eleq2d 2814 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 42 | 26, 35, 41 | 3bitr4d 311 | 1 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 × cxp 5617 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 distcds 17170 TopOpenctopn 17325 MetOpencmopn 21251 Clsdccld 22901 MetSpcms 24204 CMetccmet 25152 CMetSpccms 25230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ico 13254 df-icc 13255 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-tset 17180 df-ds 17183 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-haus 23200 df-fil 23731 df-flim 23824 df-xms 24206 df-ms 24207 df-cfil 25153 df-cmet 25155 df-cms 25233 |
| This theorem is referenced by: lssbn 25250 resscdrg 25256 srabn 25258 ishl2 25268 recms 25278 pjthlem2 25336 |
| Copyright terms: Public domain | W3C validator |