| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmsss | Structured version Visualization version GIF version | ||
| Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| cmsss.h | ⊢ 𝐾 = (𝑀 ↾s 𝐴) |
| cmsss.x | ⊢ 𝑋 = (Base‘𝑀) |
| cmsss.j | ⊢ 𝐽 = (TopOpen‘𝑀) |
| Ref | Expression |
|---|---|
| cmsss | ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 2 | xpss12 5629 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) | |
| 3 | 1, 2 | sylancom 588 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 4 | 3 | resabs1d 5956 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴))) |
| 5 | cmsss.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑀) | |
| 6 | 5 | fvexi 6836 | . . . . . . . . 9 ⊢ 𝑋 ∈ V |
| 7 | 6 | ssex 5257 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ∈ V) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 9 | cmsss.h | . . . . . . . 8 ⊢ 𝐾 = (𝑀 ↾s 𝐴) | |
| 10 | eqid 2731 | . . . . . . . 8 ⊢ (dist‘𝑀) = (dist‘𝑀) | |
| 11 | 9, 10 | ressds 17314 | . . . . . . 7 ⊢ (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾)) |
| 12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
| 13 | 9, 5 | ressbas2 17149 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 = (Base‘𝐾)) |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 = (Base‘𝐾)) |
| 15 | 14 | sqxpeqd 5646 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾))) |
| 16 | 12, 15 | reseq12d 5928 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 17 | 4, 16 | eqtrd 2766 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 18 | 14 | fveq2d 6826 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾))) |
| 19 | 17, 18 | eleq12d 2825 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 20 | eqid 2731 | . . . . . 6 ⊢ ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
| 21 | 5, 20 | cmscmet 25273 | . . . . 5 ⊢ (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
| 23 | eqid 2731 | . . . . 5 ⊢ (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
| 24 | 23 | cmetss 25243 | . . . 4 ⊢ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 25 | 22, 24 | syl 17 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 26 | 19, 25 | bitr3d 281 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 27 | cmsms 25275 | . . . 4 ⊢ (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp) | |
| 28 | ressms 24441 | . . . . 5 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀 ↾s 𝐴) ∈ MetSp) | |
| 29 | 9, 28 | eqeltrid 2835 | . . . 4 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp) |
| 30 | 27, 7, 29 | syl2an 596 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ MetSp) |
| 31 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 32 | eqid 2731 | . . . . 5 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 33 | 31, 32 | iscms 25272 | . . . 4 ⊢ (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 34 | 33 | baib 535 | . . 3 ⊢ (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 35 | 30, 34 | syl 17 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 36 | 27 | adantr 480 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝑀 ∈ MetSp) |
| 37 | cmsss.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑀) | |
| 38 | 37, 5, 20 | mstopn 24367 | . . . . 5 ⊢ (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 39 | 36, 38 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 40 | 39 | fveq2d 6826 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
| 41 | 40 | eleq2d 2817 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 42 | 26, 35, 41 | 3bitr4d 311 | 1 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 × cxp 5612 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 distcds 17170 TopOpenctopn 17325 MetOpencmopn 21281 Clsdccld 22931 MetSpcms 24233 CMetccmet 25181 CMetSpccms 25259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ico 13251 df-icc 13252 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-tset 17180 df-ds 17183 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-haus 23230 df-fil 23761 df-flim 23854 df-xms 24235 df-ms 24236 df-cfil 25182 df-cmet 25184 df-cms 25262 |
| This theorem is referenced by: lssbn 25279 resscdrg 25285 srabn 25287 ishl2 25297 recms 25307 pjthlem2 25365 |
| Copyright terms: Public domain | W3C validator |