| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmsss | Structured version Visualization version GIF version | ||
| Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| cmsss.h | ⊢ 𝐾 = (𝑀 ↾s 𝐴) |
| cmsss.x | ⊢ 𝑋 = (Base‘𝑀) |
| cmsss.j | ⊢ 𝐽 = (TopOpen‘𝑀) |
| Ref | Expression |
|---|---|
| cmsss | ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 2 | xpss12 5653 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) | |
| 3 | 1, 2 | sylancom 588 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 4 | 3 | resabs1d 5979 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴))) |
| 5 | cmsss.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑀) | |
| 6 | 5 | fvexi 6872 | . . . . . . . . 9 ⊢ 𝑋 ∈ V |
| 7 | 6 | ssex 5276 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ∈ V) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 9 | cmsss.h | . . . . . . . 8 ⊢ 𝐾 = (𝑀 ↾s 𝐴) | |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (dist‘𝑀) = (dist‘𝑀) | |
| 11 | 9, 10 | ressds 17373 | . . . . . . 7 ⊢ (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾)) |
| 12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
| 13 | 9, 5 | ressbas2 17208 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 = (Base‘𝐾)) |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 = (Base‘𝐾)) |
| 15 | 14 | sqxpeqd 5670 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾))) |
| 16 | 12, 15 | reseq12d 5951 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 17 | 4, 16 | eqtrd 2764 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 18 | 14 | fveq2d 6862 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾))) |
| 19 | 17, 18 | eleq12d 2822 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 20 | eqid 2729 | . . . . . 6 ⊢ ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
| 21 | 5, 20 | cmscmet 25246 | . . . . 5 ⊢ (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
| 23 | eqid 2729 | . . . . 5 ⊢ (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
| 24 | 23 | cmetss 25216 | . . . 4 ⊢ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 25 | 22, 24 | syl 17 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 26 | 19, 25 | bitr3d 281 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 27 | cmsms 25248 | . . . 4 ⊢ (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp) | |
| 28 | ressms 24414 | . . . . 5 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀 ↾s 𝐴) ∈ MetSp) | |
| 29 | 9, 28 | eqeltrid 2832 | . . . 4 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp) |
| 30 | 27, 7, 29 | syl2an 596 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ MetSp) |
| 31 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 32 | eqid 2729 | . . . . 5 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 33 | 31, 32 | iscms 25245 | . . . 4 ⊢ (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 34 | 33 | baib 535 | . . 3 ⊢ (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 35 | 30, 34 | syl 17 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
| 36 | 27 | adantr 480 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝑀 ∈ MetSp) |
| 37 | cmsss.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑀) | |
| 38 | 37, 5, 20 | mstopn 24340 | . . . . 5 ⊢ (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 39 | 36, 38 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
| 40 | 39 | fveq2d 6862 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
| 41 | 40 | eleq2d 2814 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
| 42 | 26, 35, 41 | 3bitr4d 311 | 1 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 distcds 17229 TopOpenctopn 17384 MetOpencmopn 21254 Clsdccld 22903 MetSpcms 24206 CMetccmet 25154 CMetSpccms 25232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-tset 17239 df-ds 17242 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-haus 23202 df-fil 23733 df-flim 23826 df-xms 24208 df-ms 24209 df-cfil 25155 df-cmet 25157 df-cms 25235 |
| This theorem is referenced by: lssbn 25252 resscdrg 25258 srabn 25260 ishl2 25270 recms 25280 pjthlem2 25338 |
| Copyright terms: Public domain | W3C validator |