Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmsss | Structured version Visualization version GIF version |
Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
cmsss.h | ⊢ 𝐾 = (𝑀 ↾s 𝐴) |
cmsss.x | ⊢ 𝑋 = (Base‘𝑀) |
cmsss.j | ⊢ 𝐽 = (TopOpen‘𝑀) |
Ref | Expression |
---|---|
cmsss | ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
2 | xpss12 5595 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) | |
3 | 1, 2 | sylancom 587 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
4 | 3 | resabs1d 5911 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴))) |
5 | cmsss.x | . . . . . . . . . 10 ⊢ 𝑋 = (Base‘𝑀) | |
6 | 5 | fvexi 6770 | . . . . . . . . 9 ⊢ 𝑋 ∈ V |
7 | 6 | ssex 5240 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ∈ V) |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
9 | cmsss.h | . . . . . . . 8 ⊢ 𝐾 = (𝑀 ↾s 𝐴) | |
10 | eqid 2738 | . . . . . . . 8 ⊢ (dist‘𝑀) = (dist‘𝑀) | |
11 | 9, 10 | ressds 17039 | . . . . . . 7 ⊢ (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾)) |
12 | 8, 11 | syl 17 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
13 | 9, 5 | ressbas2 16875 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 = (Base‘𝐾)) |
14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐴 = (Base‘𝐾)) |
15 | 14 | sqxpeqd 5612 | . . . . . 6 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾))) |
16 | 12, 15 | reseq12d 5881 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
17 | 4, 16 | eqtrd 2778 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
18 | 14 | fveq2d 6760 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾))) |
19 | 17, 18 | eleq12d 2833 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
20 | eqid 2738 | . . . . . 6 ⊢ ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
21 | 5, 20 | cmscmet 24415 | . . . . 5 ⊢ (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋)) |
23 | eqid 2738 | . . . . 5 ⊢ (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
24 | 23 | cmetss 24385 | . . . 4 ⊢ (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
25 | 22, 24 | syl 17 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
26 | 19, 25 | bitr3d 280 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
27 | cmsms 24417 | . . . 4 ⊢ (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp) | |
28 | ressms 23588 | . . . . 5 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀 ↾s 𝐴) ∈ MetSp) | |
29 | 9, 28 | eqeltrid 2843 | . . . 4 ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp) |
30 | 27, 7, 29 | syl2an 595 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ MetSp) |
31 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
32 | eqid 2738 | . . . . 5 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
33 | 31, 32 | iscms 24414 | . . . 4 ⊢ (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
34 | 33 | baib 535 | . . 3 ⊢ (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
35 | 30, 34 | syl 17 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)))) |
36 | 27 | adantr 480 | . . . . 5 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝑀 ∈ MetSp) |
37 | cmsss.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝑀) | |
38 | 37, 5, 20 | mstopn 23513 | . . . . 5 ⊢ (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
39 | 36, 38 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))) |
40 | 39 | fveq2d 6760 | . . 3 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))) |
41 | 40 | eleq2d 2824 | . 2 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))) |
42 | 26, 35, 41 | 3bitr4d 310 | 1 ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 distcds 16897 TopOpenctopn 17049 MetOpencmopn 20500 Clsdccld 22075 MetSpcms 23379 CMetccmet 24323 CMetSpccms 24401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-tset 16907 df-ds 16910 df-rest 17050 df-topn 17051 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-haus 22374 df-fil 22905 df-flim 22998 df-xms 23381 df-ms 23382 df-cfil 24324 df-cmet 24326 df-cms 24404 |
This theorem is referenced by: lssbn 24421 resscdrg 24427 srabn 24429 ishl2 24439 recms 24449 pjthlem2 24507 |
Copyright terms: Public domain | W3C validator |