MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsss Structured version   Visualization version   GIF version

Theorem cmsss 24420
Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmsss ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽)))

Proof of Theorem cmsss
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴𝑋)
2 xpss12 5595 . . . . . . 7 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
31, 2sylancom 587 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
43resabs1d 5911 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
5 cmsss.x . . . . . . . . . 10 𝑋 = (Base‘𝑀)
65fvexi 6770 . . . . . . . . 9 𝑋 ∈ V
76ssex 5240 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
87adantl 481 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
10 eqid 2738 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
119, 10ressds 17039 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
128, 11syl 17 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (dist‘𝑀) = (dist‘𝐾))
139, 5ressbas2 16875 . . . . . . . 8 (𝐴𝑋𝐴 = (Base‘𝐾))
1413adantl 481 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴 = (Base‘𝐾))
1514sqxpeqd 5612 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾)))
1612, 15reseq12d 5881 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
174, 16eqtrd 2778 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
1814fveq2d 6760 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾)))
1917, 18eleq12d 2833 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
20 eqid 2738 . . . . . 6 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
215, 20cmscmet 24415 . . . . 5 (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋))
2221adantr 480 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋))
23 eqid 2738 . . . . 5 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
2423cmetss 24385 . . . 4 (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
2522, 24syl 17 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
2619, 25bitr3d 280 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
27 cmsms 24417 . . . 4 (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp)
28 ressms 23588 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀s 𝐴) ∈ MetSp)
299, 28eqeltrid 2843 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp)
3027, 7, 29syl2an 595 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐾 ∈ MetSp)
31 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2738 . . . . 5 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
3331, 32iscms 24414 . . . 4 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3433baib 535 . . 3 (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3530, 34syl 17 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3627adantr 480 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝑀 ∈ MetSp)
37 cmsss.j . . . . . 6 𝐽 = (TopOpen‘𝑀)
3837, 5, 20mstopn 23513 . . . . 5 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
3936, 38syl 17 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4039fveq2d 6760 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4140eleq2d 2824 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
4226, 35, 413bitr4d 310 1 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  distcds 16897  TopOpenctopn 17049  MetOpencmopn 20500  Clsdccld 22075  MetSpcms 23379  CMetccmet 24323  CMetSpccms 24401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-icc 13015  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-tset 16907  df-ds 16910  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-haus 22374  df-fil 22905  df-flim 22998  df-xms 23381  df-ms 23382  df-cfil 24324  df-cmet 24326  df-cms 24404
This theorem is referenced by:  lssbn  24421  resscdrg  24427  srabn  24429  ishl2  24439  recms  24449  pjthlem2  24507
  Copyright terms: Public domain W3C validator