MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsss Structured version   Visualization version   GIF version

Theorem cmsss 24620
Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmsss ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽)))

Proof of Theorem cmsss
StepHypRef Expression
1 simpr 486 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴𝑋)
2 xpss12 5639 . . . . . . 7 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
31, 2sylancom 589 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
43resabs1d 5958 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
5 cmsss.x . . . . . . . . . 10 𝑋 = (Base‘𝑀)
65fvexi 6843 . . . . . . . . 9 𝑋 ∈ V
76ssex 5269 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
87adantl 483 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
10 eqid 2737 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
119, 10ressds 17217 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
128, 11syl 17 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (dist‘𝑀) = (dist‘𝐾))
139, 5ressbas2 17046 . . . . . . . 8 (𝐴𝑋𝐴 = (Base‘𝐾))
1413adantl 483 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴 = (Base‘𝐾))
1514sqxpeqd 5656 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾)))
1612, 15reseq12d 5928 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
174, 16eqtrd 2777 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
1814fveq2d 6833 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾)))
1917, 18eleq12d 2832 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
20 eqid 2737 . . . . . 6 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
215, 20cmscmet 24615 . . . . 5 (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋))
2221adantr 482 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋))
23 eqid 2737 . . . . 5 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
2423cmetss 24585 . . . 4 (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
2522, 24syl 17 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
2619, 25bitr3d 281 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
27 cmsms 24617 . . . 4 (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp)
28 ressms 23787 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀s 𝐴) ∈ MetSp)
299, 28eqeltrid 2842 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp)
3027, 7, 29syl2an 597 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐾 ∈ MetSp)
31 eqid 2737 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2737 . . . . 5 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
3331, 32iscms 24614 . . . 4 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3433baib 537 . . 3 (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3530, 34syl 17 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3627adantr 482 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝑀 ∈ MetSp)
37 cmsss.j . . . . . 6 𝐽 = (TopOpen‘𝑀)
3837, 5, 20mstopn 23710 . . . . 5 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
3936, 38syl 17 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4039fveq2d 6833 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4140eleq2d 2823 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
4226, 35, 413bitr4d 311 1 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  Vcvv 3442  wss 3901   × cxp 5622  cres 5626  cfv 6483  (class class class)co 7341  Basecbs 17009  s cress 17038  distcds 17068  TopOpenctopn 17229  MetOpencmopn 20692  Clsdccld 22272  MetSpcms 23576  CMetccmet 24523  CMetSpccms 24601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-map 8692  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-fi 9272  df-sup 9303  df-inf 9304  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-z 12425  df-dec 12543  df-uz 12688  df-q 12794  df-rp 12836  df-xneg 12953  df-xadd 12954  df-xmul 12955  df-ico 13190  df-icc 13191  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-tset 17078  df-ds 17081  df-rest 17230  df-topn 17231  df-topgen 17251  df-psmet 20694  df-xmet 20695  df-met 20696  df-bl 20697  df-mopn 20698  df-fbas 20699  df-fg 20700  df-top 22148  df-topon 22165  df-topsp 22187  df-bases 22201  df-cld 22275  df-ntr 22276  df-cls 22277  df-nei 22354  df-haus 22571  df-fil 23102  df-flim 23195  df-xms 23578  df-ms 23579  df-cfil 24524  df-cmet 24526  df-cms 24604
This theorem is referenced by:  lssbn  24621  resscdrg  24627  srabn  24629  ishl2  24639  recms  24649  pjthlem2  24707
  Copyright terms: Public domain W3C validator