MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsss Structured version   Visualization version   GIF version

Theorem cmsss 24202
Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cmsss.h 𝐾 = (𝑀s 𝐴)
cmsss.x 𝑋 = (Base‘𝑀)
cmsss.j 𝐽 = (TopOpen‘𝑀)
Assertion
Ref Expression
cmsss ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽)))

Proof of Theorem cmsss
StepHypRef Expression
1 simpr 488 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴𝑋)
2 xpss12 5551 . . . . . . 7 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
31, 2sylancom 591 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
43resabs1d 5867 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝑀) ↾ (𝐴 × 𝐴)))
5 cmsss.x . . . . . . . . . 10 𝑋 = (Base‘𝑀)
65fvexi 6709 . . . . . . . . 9 𝑋 ∈ V
76ssex 5199 . . . . . . . 8 (𝐴𝑋𝐴 ∈ V)
87adantl 485 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴 ∈ V)
9 cmsss.h . . . . . . . 8 𝐾 = (𝑀s 𝐴)
10 eqid 2736 . . . . . . . 8 (dist‘𝑀) = (dist‘𝑀)
119, 10ressds 16871 . . . . . . 7 (𝐴 ∈ V → (dist‘𝑀) = (dist‘𝐾))
128, 11syl 17 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (dist‘𝑀) = (dist‘𝐾))
139, 5ressbas2 16739 . . . . . . . 8 (𝐴𝑋𝐴 = (Base‘𝐾))
1413adantl 485 . . . . . . 7 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐴 = (Base‘𝐾))
1514sqxpeqd 5568 . . . . . 6 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 × 𝐴) = ((Base‘𝐾) × (Base‘𝐾)))
1612, 15reseq12d 5837 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((dist‘𝑀) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
174, 16eqtrd 2771 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
1814fveq2d 6699 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (CMet‘𝐴) = (CMet‘(Base‘𝐾)))
1917, 18eleq12d 2825 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
20 eqid 2736 . . . . . 6 ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
215, 20cmscmet 24197 . . . . 5 (𝑀 ∈ CMetSp → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋))
2221adantr 484 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋))
23 eqid 2736 . . . . 5 (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))
2423cmetss 24167 . . . 4 (((dist‘𝑀) ↾ (𝑋 × 𝑋)) ∈ (CMet‘𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
2522, 24syl 17 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → ((((dist‘𝑀) ↾ (𝑋 × 𝑋)) ↾ (𝐴 × 𝐴)) ∈ (CMet‘𝐴) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
2619, 25bitr3d 284 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾)) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
27 cmsms 24199 . . . 4 (𝑀 ∈ CMetSp → 𝑀 ∈ MetSp)
28 ressms 23378 . . . . 5 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → (𝑀s 𝐴) ∈ MetSp)
299, 28eqeltrid 2835 . . . 4 ((𝑀 ∈ MetSp ∧ 𝐴 ∈ V) → 𝐾 ∈ MetSp)
3027, 7, 29syl2an 599 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐾 ∈ MetSp)
31 eqid 2736 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2736 . . . . 5 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
3331, 32iscms 24196 . . . 4 (𝐾 ∈ CMetSp ↔ (𝐾 ∈ MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3433baib 539 . . 3 (𝐾 ∈ MetSp → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3530, 34syl 17 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (CMet‘(Base‘𝐾))))
3627adantr 484 . . . . 5 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝑀 ∈ MetSp)
37 cmsss.j . . . . . 6 𝐽 = (TopOpen‘𝑀)
3837, 5, 20mstopn 23304 . . . . 5 (𝑀 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
3936, 38syl 17 . . . 4 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → 𝐽 = (MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))
4039fveq2d 6699 . . 3 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (Clsd‘𝐽) = (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋)))))
4140eleq2d 2816 . 2 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ 𝐴 ∈ (Clsd‘(MetOpen‘((dist‘𝑀) ↾ (𝑋 × 𝑋))))))
4226, 35, 413bitr4d 314 1 ((𝑀 ∈ CMetSp ∧ 𝐴𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  wss 3853   × cxp 5534  cres 5538  cfv 6358  (class class class)co 7191  Basecbs 16666  s cress 16667  distcds 16758  TopOpenctopn 16880  MetOpencmopn 20307  Clsdccld 21867  MetSpcms 23170  CMetccmet 24105  CMetSpccms 24183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fi 9005  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ico 12906  df-icc 12907  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-tset 16768  df-ds 16771  df-rest 16881  df-topn 16882  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-haus 22166  df-fil 22697  df-flim 22790  df-xms 23172  df-ms 23173  df-cfil 24106  df-cmet 24108  df-cms 24186
This theorem is referenced by:  lssbn  24203  resscdrg  24209  srabn  24211  ishl2  24221  recms  24231  pjthlem2  24289
  Copyright terms: Public domain W3C validator