MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2d Structured version   Visualization version   GIF version

Theorem strfv2d 17130
Description: Deduction version of strfv2 17131. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2d.e 𝐸 = Slot (𝐸‘ndx)
strfv2d.s (𝜑𝑆𝑉)
strfv2d.f (𝜑 → Fun 𝑆)
strfv2d.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
strfv2d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
strfv2d (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strfv2d
StepHypRef Expression
1 strfv2d.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 strfv2d.s . . 3 (𝜑𝑆𝑉)
31, 2strfvnd 17114 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
4 cnvcnv2 6146 . . . . 5 𝑆 = (𝑆 ↾ V)
54fveq1i 6827 . . . 4 (𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx))
6 fvex 6839 . . . . 5 (𝐸‘ndx) ∈ V
7 fvres 6845 . . . . 5 ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
86, 7ax-mp 5 . . . 4 ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))
95, 8eqtri 2752 . . 3 (𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))
10 strfv2d.f . . . 4 (𝜑 → Fun 𝑆)
11 strfv2d.n . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
12 strfv2d.c . . . . . . . 8 (𝜑𝐶𝑊)
1312elexd 3462 . . . . . . 7 (𝜑𝐶 ∈ V)
14 opelxpi 5660 . . . . . . 7 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
156, 13, 14sylancr 587 . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
1611, 15elind 4153 . . . . 5 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (𝑆 ∩ (V × V)))
17 cnvcnv 6145 . . . . 5 𝑆 = (𝑆 ∩ (V × V))
1816, 17eleqtrrdi 2839 . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
19 funopfv 6876 . . . 4 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
2010, 18, 19sylc 65 . . 3 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
219, 20eqtr3id 2778 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
223, 21eqtr2d 2765 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  cop 4585   × cxp 5621  ccnv 5622  cres 5625  Fun wfun 6480  cfv 6486  Slot cslot 17110  ndxcnx 17122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-slot 17111
This theorem is referenced by:  strfv2  17131  opelstrbas  17151  ebtwntg  28945  ecgrtg  28946  elntg  28947  edgfiedgval  28980
  Copyright terms: Public domain W3C validator