MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2d Structured version   Visualization version   GIF version

Theorem strfv2d 17114
Description: Deduction version of strfv2 17115. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2d.e 𝐸 = Slot (𝐸‘ndx)
strfv2d.s (𝜑𝑆𝑉)
strfv2d.f (𝜑 → Fun 𝑆)
strfv2d.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
strfv2d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
strfv2d (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strfv2d
StepHypRef Expression
1 strfv2d.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 strfv2d.s . . 3 (𝜑𝑆𝑉)
31, 2strfvnd 17098 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
4 cnvcnv2 6145 . . . . 5 𝑆 = (𝑆 ↾ V)
54fveq1i 6829 . . . 4 (𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx))
6 fvex 6841 . . . . 5 (𝐸‘ndx) ∈ V
7 fvres 6847 . . . . 5 ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
86, 7ax-mp 5 . . . 4 ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))
95, 8eqtri 2756 . . 3 (𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))
10 strfv2d.f . . . 4 (𝜑 → Fun 𝑆)
11 strfv2d.n . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
12 strfv2d.c . . . . . . . 8 (𝜑𝐶𝑊)
1312elexd 3461 . . . . . . 7 (𝜑𝐶 ∈ V)
14 opelxpi 5656 . . . . . . 7 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
156, 13, 14sylancr 587 . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
1611, 15elind 4149 . . . . 5 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (𝑆 ∩ (V × V)))
17 cnvcnv 6144 . . . . 5 𝑆 = (𝑆 ∩ (V × V))
1816, 17eleqtrrdi 2844 . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
19 funopfv 6877 . . . 4 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
2010, 18, 19sylc 65 . . 3 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
219, 20eqtr3id 2782 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
223, 21eqtr2d 2769 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  cop 4581   × cxp 5617  ccnv 5618  cres 5621  Fun wfun 6480  cfv 6486  Slot cslot 17094  ndxcnx 17106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-slot 17095
This theorem is referenced by:  strfv2  17115  opelstrbas  17135  ebtwntg  28962  ecgrtg  28963  elntg  28964  edgfiedgval  28997
  Copyright terms: Public domain W3C validator