![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv2d | Structured version Visualization version GIF version |
Description: Deduction version of strfv2 17171. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
strfv2d.e | β’ πΈ = Slot (πΈβndx) |
strfv2d.s | β’ (π β π β π) |
strfv2d.f | β’ (π β Fun β‘β‘π) |
strfv2d.n | β’ (π β β¨(πΈβndx), πΆβ© β π) |
strfv2d.c | β’ (π β πΆ β π) |
Ref | Expression |
---|---|
strfv2d | β’ (π β πΆ = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv2d.e | . . 3 β’ πΈ = Slot (πΈβndx) | |
2 | strfv2d.s | . . 3 β’ (π β π β π) | |
3 | 1, 2 | strfvnd 17153 | . 2 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
4 | cnvcnv2 6197 | . . . . 5 β’ β‘β‘π = (π βΎ V) | |
5 | 4 | fveq1i 6895 | . . . 4 β’ (β‘β‘πβ(πΈβndx)) = ((π βΎ V)β(πΈβndx)) |
6 | fvex 6907 | . . . . 5 β’ (πΈβndx) β V | |
7 | fvres 6913 | . . . . 5 β’ ((πΈβndx) β V β ((π βΎ V)β(πΈβndx)) = (πβ(πΈβndx))) | |
8 | 6, 7 | ax-mp 5 | . . . 4 β’ ((π βΎ V)β(πΈβndx)) = (πβ(πΈβndx)) |
9 | 5, 8 | eqtri 2753 | . . 3 β’ (β‘β‘πβ(πΈβndx)) = (πβ(πΈβndx)) |
10 | strfv2d.f | . . . 4 β’ (π β Fun β‘β‘π) | |
11 | strfv2d.n | . . . . . 6 β’ (π β β¨(πΈβndx), πΆβ© β π) | |
12 | strfv2d.c | . . . . . . . 8 β’ (π β πΆ β π) | |
13 | 12 | elexd 3485 | . . . . . . 7 β’ (π β πΆ β V) |
14 | opelxpi 5714 | . . . . . . 7 β’ (((πΈβndx) β V β§ πΆ β V) β β¨(πΈβndx), πΆβ© β (V Γ V)) | |
15 | 6, 13, 14 | sylancr 585 | . . . . . 6 β’ (π β β¨(πΈβndx), πΆβ© β (V Γ V)) |
16 | 11, 15 | elind 4193 | . . . . 5 β’ (π β β¨(πΈβndx), πΆβ© β (π β© (V Γ V))) |
17 | cnvcnv 6196 | . . . . 5 β’ β‘β‘π = (π β© (V Γ V)) | |
18 | 16, 17 | eleqtrrdi 2836 | . . . 4 β’ (π β β¨(πΈβndx), πΆβ© β β‘β‘π) |
19 | funopfv 6946 | . . . 4 β’ (Fun β‘β‘π β (β¨(πΈβndx), πΆβ© β β‘β‘π β (β‘β‘πβ(πΈβndx)) = πΆ)) | |
20 | 10, 18, 19 | sylc 65 | . . 3 β’ (π β (β‘β‘πβ(πΈβndx)) = πΆ) |
21 | 9, 20 | eqtr3id 2779 | . 2 β’ (π β (πβ(πΈβndx)) = πΆ) |
22 | 3, 21 | eqtr2d 2766 | 1 β’ (π β πΆ = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3463 β© cin 3944 β¨cop 4635 Γ cxp 5675 β‘ccnv 5676 βΎ cres 5679 Fun wfun 6541 βcfv 6547 Slot cslot 17149 ndxcnx 17161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6499 df-fun 6549 df-fv 6555 df-slot 17150 |
This theorem is referenced by: strfv2 17171 opelstrbas 17193 ebtwntg 28849 ecgrtg 28850 elntg 28851 edgfiedgval 28886 |
Copyright terms: Public domain | W3C validator |