| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv2d | Structured version Visualization version GIF version | ||
| Description: Deduction version of strfv2 17179. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| strfv2d.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
| strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| strfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv2d.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 3 | 1, 2 | strfvnd 17162 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
| 4 | cnvcnv2 6169 | . . . . 5 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
| 5 | 4 | fveq1i 6862 | . . . 4 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
| 6 | fvex 6874 | . . . . 5 ⊢ (𝐸‘ndx) ∈ V | |
| 7 | fvres 6880 | . . . . 5 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)) |
| 9 | 5, 8 | eqtri 2753 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)) |
| 10 | strfv2d.f | . . . 4 ⊢ (𝜑 → Fun ◡◡𝑆) | |
| 11 | strfv2d.n | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
| 12 | strfv2d.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 13 | 12 | elexd 3474 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ V) |
| 14 | opelxpi 5678 | . . . . . . 7 ⊢ (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) | |
| 15 | 6, 13, 14 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
| 16 | 11, 15 | elind 4166 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
| 17 | cnvcnv 6168 | . . . . 5 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
| 18 | 16, 17 | eleqtrrdi 2840 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
| 19 | funopfv 6913 | . . . 4 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
| 20 | 10, 18, 19 | sylc 65 | . . 3 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
| 21 | 9, 20 | eqtr3id 2779 | . 2 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶) |
| 22 | 3, 21 | eqtr2d 2766 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 〈cop 4598 × cxp 5639 ◡ccnv 5640 ↾ cres 5643 Fun wfun 6508 ‘cfv 6514 Slot cslot 17158 ndxcnx 17170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-slot 17159 |
| This theorem is referenced by: strfv2 17179 opelstrbas 17199 ebtwntg 28916 ecgrtg 28917 elntg 28918 edgfiedgval 28951 |
| Copyright terms: Public domain | W3C validator |