![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv2d | Structured version Visualization version GIF version |
Description: Deduction version of strfv2 17250. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
strfv2d.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
strfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv2d.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | 1, 2 | strfvnd 17232 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
4 | cnvcnv2 6224 | . . . . 5 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
5 | 4 | fveq1i 6921 | . . . 4 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
6 | fvex 6933 | . . . . 5 ⊢ (𝐸‘ndx) ∈ V | |
7 | fvres 6939 | . . . . 5 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)) |
9 | 5, 8 | eqtri 2768 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)) |
10 | strfv2d.f | . . . 4 ⊢ (𝜑 → Fun ◡◡𝑆) | |
11 | strfv2d.n | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
12 | strfv2d.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
13 | 12 | elexd 3512 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ V) |
14 | opelxpi 5737 | . . . . . . 7 ⊢ (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) | |
15 | 6, 13, 14 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
16 | 11, 15 | elind 4223 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
17 | cnvcnv 6223 | . . . . 5 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
18 | 16, 17 | eleqtrrdi 2855 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
19 | funopfv 6972 | . . . 4 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
20 | 10, 18, 19 | sylc 65 | . . 3 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
21 | 9, 20 | eqtr3id 2794 | . 2 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶) |
22 | 3, 21 | eqtr2d 2781 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 〈cop 4654 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 Fun wfun 6567 ‘cfv 6573 Slot cslot 17228 ndxcnx 17240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-slot 17229 |
This theorem is referenced by: strfv2 17250 opelstrbas 17272 ebtwntg 29015 ecgrtg 29016 elntg 29017 edgfiedgval 29052 |
Copyright terms: Public domain | W3C validator |