MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2d Structured version   Visualization version   GIF version

Theorem strfv2d 16903
Description: Deduction version of strfv2 16904. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2d.e 𝐸 = Slot (𝐸‘ndx)
strfv2d.s (𝜑𝑆𝑉)
strfv2d.f (𝜑 → Fun 𝑆)
strfv2d.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
strfv2d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
strfv2d (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strfv2d
StepHypRef Expression
1 strfv2d.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 strfv2d.s . . 3 (𝜑𝑆𝑉)
31, 2strfvnd 16886 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
4 cnvcnv2 6096 . . . . 5 𝑆 = (𝑆 ↾ V)
54fveq1i 6775 . . . 4 (𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx))
6 fvex 6787 . . . . 5 (𝐸‘ndx) ∈ V
7 fvres 6793 . . . . 5 ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
86, 7ax-mp 5 . . . 4 ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))
95, 8eqtri 2766 . . 3 (𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))
10 strfv2d.f . . . 4 (𝜑 → Fun 𝑆)
11 strfv2d.n . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
12 strfv2d.c . . . . . . . 8 (𝜑𝐶𝑊)
1312elexd 3452 . . . . . . 7 (𝜑𝐶 ∈ V)
14 opelxpi 5626 . . . . . . 7 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
156, 13, 14sylancr 587 . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
1611, 15elind 4128 . . . . 5 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (𝑆 ∩ (V × V)))
17 cnvcnv 6095 . . . . 5 𝑆 = (𝑆 ∩ (V × V))
1816, 17eleqtrrdi 2850 . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
19 funopfv 6821 . . . 4 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
2010, 18, 19sylc 65 . . 3 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
219, 20eqtr3id 2792 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
223, 21eqtr2d 2779 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  cop 4567   × cxp 5587  ccnv 5588  cres 5591  Fun wfun 6427  cfv 6433  Slot cslot 16882  ndxcnx 16894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-slot 16883
This theorem is referenced by:  strfv2  16904  opelstrbas  16926  ebtwntg  27350  ecgrtg  27351  elntg  27352  edgfiedgval  27387
  Copyright terms: Public domain W3C validator