Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfv2d | Structured version Visualization version GIF version |
Description: Deduction version of strfv2 16832. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
strfv2d.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
strfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv2d.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | 1, 2 | strfvnd 16814 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
4 | cnvcnv2 6085 | . . . . 5 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
5 | 4 | fveq1i 6757 | . . . 4 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
6 | fvex 6769 | . . . . 5 ⊢ (𝐸‘ndx) ∈ V | |
7 | fvres 6775 | . . . . 5 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)) |
9 | 5, 8 | eqtri 2766 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)) |
10 | strfv2d.f | . . . 4 ⊢ (𝜑 → Fun ◡◡𝑆) | |
11 | strfv2d.n | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
12 | strfv2d.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
13 | 12 | elexd 3442 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ V) |
14 | opelxpi 5617 | . . . . . . 7 ⊢ (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) | |
15 | 6, 13, 14 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
16 | 11, 15 | elind 4124 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
17 | cnvcnv 6084 | . . . . 5 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
18 | 16, 17 | eleqtrrdi 2850 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
19 | funopfv 6803 | . . . 4 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
20 | 10, 18, 19 | sylc 65 | . . 3 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
21 | 9, 20 | eqtr3id 2793 | . 2 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶) |
22 | 3, 21 | eqtr2d 2779 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 〈cop 4564 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 Fun wfun 6412 ‘cfv 6418 Slot cslot 16810 ndxcnx 16822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-slot 16811 |
This theorem is referenced by: strfv2 16832 opelstrbas 16854 ebtwntg 27253 ecgrtg 27254 elntg 27255 edgfiedgval 27290 |
Copyright terms: Public domain | W3C validator |