MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2d Structured version   Visualization version   GIF version

Theorem strfv2d 17236
Description: Deduction version of strfv2 17237. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2d.e 𝐸 = Slot (𝐸‘ndx)
strfv2d.s (𝜑𝑆𝑉)
strfv2d.f (𝜑 → Fun 𝑆)
strfv2d.n (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
strfv2d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
strfv2d (𝜑𝐶 = (𝐸𝑆))

Proof of Theorem strfv2d
StepHypRef Expression
1 strfv2d.e . . 3 𝐸 = Slot (𝐸‘ndx)
2 strfv2d.s . . 3 (𝜑𝑆𝑉)
31, 2strfvnd 17219 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
4 cnvcnv2 6215 . . . . 5 𝑆 = (𝑆 ↾ V)
54fveq1i 6908 . . . 4 (𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx))
6 fvex 6920 . . . . 5 (𝐸‘ndx) ∈ V
7 fvres 6926 . . . . 5 ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)))
86, 7ax-mp 5 . . . 4 ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))
95, 8eqtri 2763 . . 3 (𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))
10 strfv2d.f . . . 4 (𝜑 → Fun 𝑆)
11 strfv2d.n . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
12 strfv2d.c . . . . . . . 8 (𝜑𝐶𝑊)
1312elexd 3502 . . . . . . 7 (𝜑𝐶 ∈ V)
14 opelxpi 5726 . . . . . . 7 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
156, 13, 14sylancr 587 . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
1611, 15elind 4210 . . . . 5 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (𝑆 ∩ (V × V)))
17 cnvcnv 6214 . . . . 5 𝑆 = (𝑆 ∩ (V × V))
1816, 17eleqtrrdi 2850 . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
19 funopfv 6959 . . . 4 (Fun 𝑆 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 → (𝑆‘(𝐸‘ndx)) = 𝐶))
2010, 18, 19sylc 65 . . 3 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
219, 20eqtr3id 2789 . 2 (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶)
223, 21eqtr2d 2776 1 (𝜑𝐶 = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  cop 4637   × cxp 5687  ccnv 5688  cres 5691  Fun wfun 6557  cfv 6563  Slot cslot 17215  ndxcnx 17227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-slot 17216
This theorem is referenced by:  strfv2  17237  opelstrbas  17259  ebtwntg  29012  ecgrtg  29013  elntg  29014  edgfiedgval  29049
  Copyright terms: Public domain W3C validator