![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv2d | Structured version Visualization version GIF version |
Description: Deduction version of strfv2 17163. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
strfv2d.e | β’ πΈ = Slot (πΈβndx) |
strfv2d.s | β’ (π β π β π) |
strfv2d.f | β’ (π β Fun β‘β‘π) |
strfv2d.n | β’ (π β β¨(πΈβndx), πΆβ© β π) |
strfv2d.c | β’ (π β πΆ β π) |
Ref | Expression |
---|---|
strfv2d | β’ (π β πΆ = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv2d.e | . . 3 β’ πΈ = Slot (πΈβndx) | |
2 | strfv2d.s | . . 3 β’ (π β π β π) | |
3 | 1, 2 | strfvnd 17145 | . 2 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
4 | cnvcnv2 6191 | . . . . 5 β’ β‘β‘π = (π βΎ V) | |
5 | 4 | fveq1i 6892 | . . . 4 β’ (β‘β‘πβ(πΈβndx)) = ((π βΎ V)β(πΈβndx)) |
6 | fvex 6904 | . . . . 5 β’ (πΈβndx) β V | |
7 | fvres 6910 | . . . . 5 β’ ((πΈβndx) β V β ((π βΎ V)β(πΈβndx)) = (πβ(πΈβndx))) | |
8 | 6, 7 | ax-mp 5 | . . . 4 β’ ((π βΎ V)β(πΈβndx)) = (πβ(πΈβndx)) |
9 | 5, 8 | eqtri 2755 | . . 3 β’ (β‘β‘πβ(πΈβndx)) = (πβ(πΈβndx)) |
10 | strfv2d.f | . . . 4 β’ (π β Fun β‘β‘π) | |
11 | strfv2d.n | . . . . . 6 β’ (π β β¨(πΈβndx), πΆβ© β π) | |
12 | strfv2d.c | . . . . . . . 8 β’ (π β πΆ β π) | |
13 | 12 | elexd 3490 | . . . . . . 7 β’ (π β πΆ β V) |
14 | opelxpi 5709 | . . . . . . 7 β’ (((πΈβndx) β V β§ πΆ β V) β β¨(πΈβndx), πΆβ© β (V Γ V)) | |
15 | 6, 13, 14 | sylancr 586 | . . . . . 6 β’ (π β β¨(πΈβndx), πΆβ© β (V Γ V)) |
16 | 11, 15 | elind 4190 | . . . . 5 β’ (π β β¨(πΈβndx), πΆβ© β (π β© (V Γ V))) |
17 | cnvcnv 6190 | . . . . 5 β’ β‘β‘π = (π β© (V Γ V)) | |
18 | 16, 17 | eleqtrrdi 2839 | . . . 4 β’ (π β β¨(πΈβndx), πΆβ© β β‘β‘π) |
19 | funopfv 6943 | . . . 4 β’ (Fun β‘β‘π β (β¨(πΈβndx), πΆβ© β β‘β‘π β (β‘β‘πβ(πΈβndx)) = πΆ)) | |
20 | 10, 18, 19 | sylc 65 | . . 3 β’ (π β (β‘β‘πβ(πΈβndx)) = πΆ) |
21 | 9, 20 | eqtr3id 2781 | . 2 β’ (π β (πβ(πΈβndx)) = πΆ) |
22 | 3, 21 | eqtr2d 2768 | 1 β’ (π β πΆ = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 Vcvv 3469 β© cin 3943 β¨cop 4630 Γ cxp 5670 β‘ccnv 5671 βΎ cres 5674 Fun wfun 6536 βcfv 6542 Slot cslot 17141 ndxcnx 17153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-slot 17142 |
This theorem is referenced by: strfv2 17163 opelstrbas 17185 ebtwntg 28780 ecgrtg 28781 elntg 28782 edgfiedgval 28817 |
Copyright terms: Public domain | W3C validator |