|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cocnvcnv1 | Structured version Visualization version GIF version | ||
| Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) | 
| Ref | Expression | 
|---|---|
| cocnvcnv1 | ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvcnv2 6212 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
| 2 | 1 | coeq1i 5869 | . 2 ⊢ (◡◡𝐴 ∘ 𝐵) = ((𝐴 ↾ V) ∘ 𝐵) | 
| 3 | ssv 4007 | . . 3 ⊢ ran 𝐵 ⊆ V | |
| 4 | cores 6268 | . . 3 ⊢ (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵) | 
| 6 | 2, 5 | eqtri 2764 | 1 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 Vcvv 3479 ⊆ wss 3950 ◡ccnv 5683 ran crn 5685 ↾ cres 5686 ∘ ccom 5688 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 | 
| This theorem is referenced by: cores2 6278 coires1 6283 cofunex2g 7975 mvdco 19464 deg1val 26136 trlcocnv 40723 trclubgNEW 43636 cnvtrrel 43688 trrelsuperrel2dg 43689 | 
| Copyright terms: Public domain | W3C validator |