Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cocnvcnv1 | Structured version Visualization version GIF version |
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cocnvcnv1 | ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 6085 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
2 | 1 | coeq1i 5757 | . 2 ⊢ (◡◡𝐴 ∘ 𝐵) = ((𝐴 ↾ V) ∘ 𝐵) |
3 | ssv 3941 | . . 3 ⊢ ran 𝐵 ⊆ V | |
4 | cores 6142 | . . 3 ⊢ (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵) |
6 | 2, 5 | eqtri 2766 | 1 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ⊆ wss 3883 ◡ccnv 5579 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: cores2 6152 coires1 6157 cofunex2g 7766 mvdco 18968 deg1val 25166 trlcocnv 38661 trclubgNEW 41115 cnvtrrel 41167 trrelsuperrel2dg 41168 |
Copyright terms: Public domain | W3C validator |