| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cocnvcnv1 | Structured version Visualization version GIF version | ||
| Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
| Ref | Expression |
|---|---|
| cocnvcnv1 | ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv2 6169 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
| 2 | 1 | coeq1i 5826 | . 2 ⊢ (◡◡𝐴 ∘ 𝐵) = ((𝐴 ↾ V) ∘ 𝐵) |
| 3 | ssv 3974 | . . 3 ⊢ ran 𝐵 ⊆ V | |
| 4 | cores 6225 | . . 3 ⊢ (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| 6 | 2, 5 | eqtri 2753 | 1 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ⊆ wss 3917 ◡ccnv 5640 ran crn 5642 ↾ cres 5643 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 |
| This theorem is referenced by: cores2 6235 coires1 6240 cofunex2g 7931 mvdco 19382 deg1val 26008 trlcocnv 40721 trclubgNEW 43614 cnvtrrel 43666 trrelsuperrel2dg 43667 |
| Copyright terms: Public domain | W3C validator |