MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocnvcnv1 Structured version   Visualization version   GIF version

Theorem cocnvcnv1 6288
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv1 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv1
StepHypRef Expression
1 cnvcnv2 6224 . . 3 𝐴 = (𝐴 ↾ V)
21coeq1i 5884 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ∘ 𝐵)
3 ssv 4033 . . 3 ran 𝐵 ⊆ V
4 cores 6280 . . 3 (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵))
53, 4ax-mp 5 . 2 ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵)
62, 5eqtri 2768 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  wss 3976  ccnv 5699  ran crn 5701  cres 5702  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  cores2  6290  coires1  6295  cofunex2g  7990  mvdco  19487  deg1val  26155  trlcocnv  40677  trclubgNEW  43580  cnvtrrel  43632  trrelsuperrel2dg  43633
  Copyright terms: Public domain W3C validator