| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cocnvcnv1 | Structured version Visualization version GIF version | ||
| Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
| Ref | Expression |
|---|---|
| cocnvcnv1 | ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv2 6142 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
| 2 | 1 | coeq1i 5802 | . 2 ⊢ (◡◡𝐴 ∘ 𝐵) = ((𝐴 ↾ V) ∘ 𝐵) |
| 3 | ssv 3960 | . . 3 ⊢ ran 𝐵 ⊆ V | |
| 4 | cores 6198 | . . 3 ⊢ (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| 6 | 2, 5 | eqtri 2752 | 1 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ⊆ wss 3903 ◡ccnv 5618 ran crn 5620 ↾ cres 5621 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 |
| This theorem is referenced by: cores2 6208 coires1 6213 cofunex2g 7885 mvdco 19324 deg1val 25999 trlcocnv 40719 trclubgNEW 43611 cnvtrrel 43663 trrelsuperrel2dg 43664 |
| Copyright terms: Public domain | W3C validator |