MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocnvcnv1 Structured version   Visualization version   GIF version

Theorem cocnvcnv1 6246
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv1 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv1
StepHypRef Expression
1 cnvcnv2 6182 . . 3 𝐴 = (𝐴 ↾ V)
21coeq1i 5849 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ∘ 𝐵)
3 ssv 3998 . . 3 ran 𝐵 ⊆ V
4 cores 6238 . . 3 (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵))
53, 4ax-mp 5 . 2 ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵)
62, 5eqtri 2752 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3466  wss 3940  ccnv 5665  ran crn 5667  cres 5668  ccom 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678
This theorem is referenced by:  cores2  6248  coires1  6253  cofunex2g  7929  mvdco  19355  deg1val  25954  trlcocnv  40081  trclubgNEW  42858  cnvtrrel  42910  trrelsuperrel2dg  42911
  Copyright terms: Public domain W3C validator