MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocnvcnv1 Structured version   Visualization version   GIF version

Theorem cocnvcnv1 6251
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv1 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv1
StepHypRef Expression
1 cnvcnv2 6187 . . 3 𝐴 = (𝐴 ↾ V)
21coeq1i 5844 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ∘ 𝐵)
3 ssv 3988 . . 3 ran 𝐵 ⊆ V
4 cores 6243 . . 3 (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵))
53, 4ax-mp 5 . 2 ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵)
62, 5eqtri 2759 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3464  wss 3931  ccnv 5658  ran crn 5660  cres 5661  ccom 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671
This theorem is referenced by:  cores2  6253  coires1  6258  cofunex2g  7953  mvdco  19431  deg1val  26058  trlcocnv  40744  trclubgNEW  43609  cnvtrrel  43661  trrelsuperrel2dg  43662
  Copyright terms: Public domain W3C validator