MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocnvcnv1 Structured version   Visualization version   GIF version

Theorem cocnvcnv1 6276
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv1 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv1
StepHypRef Expression
1 cnvcnv2 6212 . . 3 𝐴 = (𝐴 ↾ V)
21coeq1i 5869 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ∘ 𝐵)
3 ssv 4007 . . 3 ran 𝐵 ⊆ V
4 cores 6268 . . 3 (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵))
53, 4ax-mp 5 . 2 ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵)
62, 5eqtri 2764 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3479  wss 3950  ccnv 5683  ran crn 5685  cres 5686  ccom 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696
This theorem is referenced by:  cores2  6278  coires1  6283  cofunex2g  7975  mvdco  19464  deg1val  26136  trlcocnv  40723  trclubgNEW  43636  cnvtrrel  43688  trrelsuperrel2dg  43689
  Copyright terms: Public domain W3C validator