Proof of Theorem relexpaddg
Step | Hyp | Ref
| Expression |
1 | | elnn0 11941 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
2 | | elnn0 11941 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
↔ (𝑀 ∈ ℕ
∨ 𝑀 =
0)) |
3 | | relexpaddnn 14463 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |
4 | 3 | a1d 25 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
5 | 4 | 3exp 1116 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
6 | 5 | com12 32 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
7 | | elnn1uz2 12370 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈
(ℤ≥‘2))) |
8 | | coires1 6098 |
. . . . . . . . . . . . . 14
⊢ ((𝑅↑𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅↑𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) |
9 | | simpll 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 = 1) |
10 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 = 0) |
11 | 9, 10 | oveq12d 7173 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (1 + 0)) |
12 | | 1p0e1 11803 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 + 0) =
1 |
13 | 11, 12 | eqtrdi 2809 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 1) |
14 | | simprr 772 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑁 + 𝑀) = 1 → Rel 𝑅)) |
15 | 13, 14 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel 𝑅) |
16 | 9 | oveq2d 7171 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟1)) |
17 | | simprl 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑅 ∈ 𝑉) |
18 | | relexp1g 14438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟1) = 𝑅) |
20 | 16, 19 | eqtrd 2793 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟𝑁) = 𝑅) |
21 | 20 | releqd 5626 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (Rel (𝑅↑𝑟𝑁) ↔ Rel 𝑅)) |
22 | 15, 21 | mpbird 260 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel (𝑅↑𝑟𝑁)) |
23 | | 1nn 11690 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ |
24 | 9, 23 | eqeltrdi 2860 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈ ℕ) |
25 | | relexpnndm 14453 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
26 | 24, 17, 25 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
27 | | ssun1 4079 |
. . . . . . . . . . . . . . . 16
⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) |
28 | 26, 27 | sstrdi 3906 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → dom (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
29 | | relssres 5868 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝑅↑𝑟𝑁) ∧ dom (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅↑𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅↑𝑟𝑁)) |
30 | 22, 28, 29 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅↑𝑟𝑁)) |
31 | 8, 30 | syl5eq 2805 |
. . . . . . . . . . . . 13
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅↑𝑟𝑁)) |
32 | 10 | oveq2d 7171 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟𝑀) = (𝑅↑𝑟0)) |
33 | | relexp0g 14434 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
34 | 17, 33 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
35 | 32, 34 | eqtrd 2793 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
36 | 35 | coeq2d 5707 |
. . . . . . . . . . . . 13
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ((𝑅↑𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
37 | 10 | oveq2d 7171 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (𝑁 + 0)) |
38 | | ax-1cn 10638 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
39 | 9, 38 | eqeltrdi 2860 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈ ℂ) |
40 | 39 | addid1d 10883 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 0) = 𝑁) |
41 | 37, 40 | eqtrd 2793 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 𝑁) |
42 | 41 | oveq2d 7171 |
. . . . . . . . . . . . 13
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟(𝑁 + 𝑀)) = (𝑅↑𝑟𝑁)) |
43 | 31, 36, 42 | 3eqtr4d 2803 |
. . . . . . . . . . . 12
⊢ (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |
44 | 43 | exp43 440 |
. . . . . . . . . . 11
⊢ (𝑁 = 1 → (𝑀 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
45 | | simp1 1133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈
(ℤ≥‘2)) |
46 | | simp3 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) |
47 | | relexpuzrel 14464 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟𝑁)) |
48 | 45, 46, 47 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟𝑁)) |
49 | | eluz2nn 12329 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) |
50 | 45, 49 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ ℕ) |
51 | 50, 46, 25 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
52 | 51, 27 | sstrdi 3906 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
53 | 48, 52, 29 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅↑𝑟𝑁)) |
54 | 8, 53 | syl5eq 2805 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅↑𝑟𝑁)) |
55 | | simp2 1134 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑀 = 0) |
56 | 55 | oveq2d 7171 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑀) = (𝑅↑𝑟0)) |
57 | 46, 33 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
58 | 56, 57 | eqtrd 2793 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
59 | 58 | coeq2d 5707 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ((𝑅↑𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
60 | 55 | oveq2d 7171 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 𝑀) = (𝑁 + 0)) |
61 | | eluzelcn 12299 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℂ) |
62 | 45, 61 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ ℂ) |
63 | 62 | addid1d 10883 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 0) = 𝑁) |
64 | 60, 63 | eqtrd 2793 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 𝑀) = 𝑁) |
65 | 64 | oveq2d 7171 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 𝑀)) = (𝑅↑𝑟𝑁)) |
66 | 54, 59, 65 | 3eqtr4d 2803 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |
67 | 66 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
68 | 67 | 3exp 1116 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘2) → (𝑀 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
69 | 44, 68 | jaoi 854 |
. . . . . . . . . 10
⊢ ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))
→ (𝑀 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
70 | 7, 69 | sylbi 220 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑀 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
71 | 70 | com12 32 |
. . . . . . . 8
⊢ (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
72 | 6, 71 | jaoi 854 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
73 | 2, 72 | sylbi 220 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ (𝑁 ∈ ℕ
→ (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
74 | 73 | com12 32 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝑀 ∈ ℕ0
→ (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
75 | 74 | 3impd 1345 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
76 | | elnn1uz2 12370 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈
(ℤ≥‘2))) |
77 | | coires1 6098 |
. . . . . . . . . . . . . . 15
⊢ (◡𝑅 ∘ ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅))) = (◡𝑅 ↾ (dom ◡𝑅 ∪ ran ◡𝑅)) |
78 | | relcnv 5943 |
. . . . . . . . . . . . . . . . 17
⊢ Rel ◡𝑅 |
79 | | ssun1 4079 |
. . . . . . . . . . . . . . . . 17
⊢ dom ◡𝑅 ⊆ (dom ◡𝑅 ∪ ran ◡𝑅) |
80 | 78, 79 | pm3.2i 474 |
. . . . . . . . . . . . . . . 16
⊢ (Rel
◡𝑅 ∧ dom ◡𝑅 ⊆ (dom ◡𝑅 ∪ ran ◡𝑅)) |
81 | | relssres 5868 |
. . . . . . . . . . . . . . . 16
⊢ ((Rel
◡𝑅 ∧ dom ◡𝑅 ⊆ (dom ◡𝑅 ∪ ran ◡𝑅)) → (◡𝑅 ↾ (dom ◡𝑅 ∪ ran ◡𝑅)) = ◡𝑅) |
82 | 80, 81 | mp1i 13 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (◡𝑅 ↾ (dom ◡𝑅 ∪ ran ◡𝑅)) = ◡𝑅) |
83 | 77, 82 | syl5eq 2805 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (◡𝑅 ∘ ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅))) = ◡𝑅) |
84 | | cnvco 5730 |
. . . . . . . . . . . . . . 15
⊢ ◡((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (◡(𝑅↑𝑟𝑀) ∘ ◡(𝑅↑𝑟𝑁)) |
85 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 = 1) |
86 | | 1nn0 11955 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℕ0 |
87 | 85, 86 | eqeltrdi 2860 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 ∈
ℕ0) |
88 | | simprl 770 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑅 ∈ 𝑉) |
89 | | relexpcnv 14447 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑀) = (◡𝑅↑𝑟𝑀)) |
90 | 87, 88, 89 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡(𝑅↑𝑟𝑀) = (◡𝑅↑𝑟𝑀)) |
91 | 85 | oveq2d 7171 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (◡𝑅↑𝑟𝑀) = (◡𝑅↑𝑟1)) |
92 | | cnvexg 7639 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ 𝑉 → ◡𝑅 ∈ V) |
93 | 88, 92 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡𝑅 ∈ V) |
94 | | relexp1g 14438 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑅 ∈ V → (◡𝑅↑𝑟1) = ◡𝑅) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (◡𝑅↑𝑟1) = ◡𝑅) |
96 | 90, 91, 95 | 3eqtrd 2797 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡(𝑅↑𝑟𝑀) = ◡𝑅) |
97 | | simpll 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 = 0) |
98 | | 0nn0 11954 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℕ0 |
99 | 97, 98 | eqeltrdi 2860 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈
ℕ0) |
100 | | relexpcnv 14447 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) |
101 | 99, 88, 100 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) |
102 | 97 | oveq2d 7171 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (◡𝑅↑𝑟𝑁) = (◡𝑅↑𝑟0)) |
103 | | relexp0g 14434 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑅 ∈ V → (◡𝑅↑𝑟0) = ( I ↾
(dom ◡𝑅 ∪ ran ◡𝑅))) |
104 | 93, 103 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (◡𝑅↑𝑟0) = ( I ↾
(dom ◡𝑅 ∪ ran ◡𝑅))) |
105 | 101, 102,
104 | 3eqtrd 2797 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡(𝑅↑𝑟𝑁) = ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅))) |
106 | 96, 105 | coeq12d 5709 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (◡(𝑅↑𝑟𝑀) ∘ ◡(𝑅↑𝑟𝑁)) = (◡𝑅 ∘ ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅)))) |
107 | 84, 106 | syl5eq 2805 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (◡𝑅 ∘ ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅)))) |
108 | 99, 87 | nn0addcld 12003 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) ∈
ℕ0) |
109 | | relexpcnv 14447 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 + 𝑀) ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟(𝑁 + 𝑀)) = (◡𝑅↑𝑟(𝑁 + 𝑀))) |
110 | 108, 88, 109 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡(𝑅↑𝑟(𝑁 + 𝑀)) = (◡𝑅↑𝑟(𝑁 + 𝑀))) |
111 | 97, 85 | oveq12d 7173 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (0 + 1)) |
112 | | 0p1e1 11801 |
. . . . . . . . . . . . . . . . 17
⊢ (0 + 1) =
1 |
113 | 111, 112 | eqtrdi 2809 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 1) |
114 | 113 | oveq2d 7171 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (◡𝑅↑𝑟(𝑁 + 𝑀)) = (◡𝑅↑𝑟1)) |
115 | 110, 114,
95 | 3eqtrd 2797 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡(𝑅↑𝑟(𝑁 + 𝑀)) = ◡𝑅) |
116 | 83, 107, 115 | 3eqtr4d 2803 |
. . . . . . . . . . . . 13
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ◡((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ◡(𝑅↑𝑟(𝑁 + 𝑀))) |
117 | | relco 6078 |
. . . . . . . . . . . . . 14
⊢ Rel
((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) |
118 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑁 + 𝑀) = 1 → Rel 𝑅)) |
119 | 113, 118 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel 𝑅) |
120 | 113 | oveq2d 7171 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟(𝑁 + 𝑀)) = (𝑅↑𝑟1)) |
121 | 88, 18 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟1) = 𝑅) |
122 | 120, 121 | eqtrd 2793 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅↑𝑟(𝑁 + 𝑀)) = 𝑅) |
123 | 122 | releqd 5626 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (Rel (𝑅↑𝑟(𝑁 + 𝑀)) ↔ Rel 𝑅)) |
124 | 119, 123 | mpbird 260 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel (𝑅↑𝑟(𝑁 + 𝑀))) |
125 | | cnveqb 6029 |
. . . . . . . . . . . . . 14
⊢ ((Rel
((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) ∧ Rel (𝑅↑𝑟(𝑁 + 𝑀))) → (((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)) ↔ ◡((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ◡(𝑅↑𝑟(𝑁 + 𝑀)))) |
126 | 117, 124,
125 | sylancr 590 |
. . . . . . . . . . . . 13
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)) ↔ ◡((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ◡(𝑅↑𝑟(𝑁 + 𝑀)))) |
127 | 116, 126 | mpbird 260 |
. . . . . . . . . . . 12
⊢ (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |
128 | 127 | exp43 440 |
. . . . . . . . . . 11
⊢ (𝑁 = 0 → (𝑀 = 1 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
129 | 128 | com12 32 |
. . . . . . . . . 10
⊢ (𝑀 = 1 → (𝑁 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
130 | | coires1 6098 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑅↑𝑟𝑀) ∘ ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅))) = ((◡𝑅↑𝑟𝑀) ↾ (dom ◡𝑅 ∪ ran ◡𝑅)) |
131 | | simp2 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → 𝑀 ∈
(ℤ≥‘2)) |
132 | | simp3 1135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) |
133 | 132, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ◡𝑅 ∈ V) |
134 | | relexpuzrel 14464 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈
(ℤ≥‘2) ∧ ◡𝑅 ∈ V) → Rel (◡𝑅↑𝑟𝑀)) |
135 | 131, 133,
134 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → Rel (◡𝑅↑𝑟𝑀)) |
136 | | eluz2nn 12329 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈ ℕ) |
137 | 131, 136 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → 𝑀 ∈ ℕ) |
138 | | relexpnndm 14453 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℕ ∧ ◡𝑅 ∈ V) → dom (◡𝑅↑𝑟𝑀) ⊆ dom ◡𝑅) |
139 | 137, 133,
138 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → dom (◡𝑅↑𝑟𝑀) ⊆ dom ◡𝑅) |
140 | 139, 79 | sstrdi 3906 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → dom (◡𝑅↑𝑟𝑀) ⊆ (dom ◡𝑅 ∪ ran ◡𝑅)) |
141 | | relssres 5868 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Rel
(◡𝑅↑𝑟𝑀) ∧ dom (◡𝑅↑𝑟𝑀) ⊆ (dom ◡𝑅 ∪ ran ◡𝑅)) → ((◡𝑅↑𝑟𝑀) ↾ (dom ◡𝑅 ∪ ran ◡𝑅)) = (◡𝑅↑𝑟𝑀)) |
142 | 135, 140,
141 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ((◡𝑅↑𝑟𝑀) ↾ (dom ◡𝑅 ∪ ran ◡𝑅)) = (◡𝑅↑𝑟𝑀)) |
143 | 130, 142 | syl5eq 2805 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ((◡𝑅↑𝑟𝑀) ∘ ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅))) = (◡𝑅↑𝑟𝑀)) |
144 | | simp1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) |
145 | 144 | oveq2d 7171 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (◡𝑅↑𝑟𝑁) = (◡𝑅↑𝑟0)) |
146 | 133, 103 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (◡𝑅↑𝑟0) = ( I ↾
(dom ◡𝑅 ∪ ran ◡𝑅))) |
147 | 145, 146 | eqtrd 2793 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (◡𝑅↑𝑟𝑁) = ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅))) |
148 | 147 | coeq2d 5707 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ((◡𝑅↑𝑟𝑀) ∘ (◡𝑅↑𝑟𝑁)) = ((◡𝑅↑𝑟𝑀) ∘ ( I ↾ (dom ◡𝑅 ∪ ran ◡𝑅)))) |
149 | 144 | oveq1d 7170 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (𝑁 + 𝑀) = (0 + 𝑀)) |
150 | | eluzelcn 12299 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈ ℂ) |
151 | 131, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → 𝑀 ∈ ℂ) |
152 | 151 | addid2d 10884 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (0 + 𝑀) = 𝑀) |
153 | 149, 152 | eqtrd 2793 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (𝑁 + 𝑀) = 𝑀) |
154 | 153 | oveq2d 7171 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (◡𝑅↑𝑟(𝑁 + 𝑀)) = (◡𝑅↑𝑟𝑀)) |
155 | 143, 148,
154 | 3eqtr4d 2803 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ((◡𝑅↑𝑟𝑀) ∘ (◡𝑅↑𝑟𝑁)) = (◡𝑅↑𝑟(𝑁 + 𝑀))) |
156 | | nnnn0 11946 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
157 | 131, 136,
156 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → 𝑀 ∈
ℕ0) |
158 | 157, 132,
89 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑀) = (◡𝑅↑𝑟𝑀)) |
159 | 144, 98 | eqeltrdi 2860 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → 𝑁 ∈
ℕ0) |
160 | 159, 132,
100 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟𝑁) = (◡𝑅↑𝑟𝑁)) |
161 | 158, 160 | coeq12d 5709 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (◡(𝑅↑𝑟𝑀) ∘ ◡(𝑅↑𝑟𝑁)) = ((◡𝑅↑𝑟𝑀) ∘ (◡𝑅↑𝑟𝑁))) |
162 | 84, 161 | syl5eq 2805 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ◡((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ((◡𝑅↑𝑟𝑀) ∘ (◡𝑅↑𝑟𝑁))) |
163 | 159, 157 | nn0addcld 12003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (𝑁 + 𝑀) ∈
ℕ0) |
164 | 163, 132,
109 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ◡(𝑅↑𝑟(𝑁 + 𝑀)) = (◡𝑅↑𝑟(𝑁 + 𝑀))) |
165 | 155, 162,
164 | 3eqtr4d 2803 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ◡((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ◡(𝑅↑𝑟(𝑁 + 𝑀))) |
166 | 159 | nn0cnd 12001 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ ℂ) |
167 | 151, 166 | addcomd 10885 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (𝑀 + 𝑁) = (𝑁 + 𝑀)) |
168 | | uzaddcl 12349 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈
(ℤ≥‘2)) |
169 | 131, 159,
168 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (𝑀 + 𝑁) ∈
(ℤ≥‘2)) |
170 | 167, 169 | eqeltrrd 2853 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (𝑁 + 𝑀) ∈
(ℤ≥‘2)) |
171 | | relexpuzrel 14464 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 + 𝑀) ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟(𝑁 + 𝑀))) |
172 | 170, 132,
171 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟(𝑁 + 𝑀))) |
173 | 117, 172,
125 | sylancr 590 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)) ↔ ◡((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ◡(𝑅↑𝑟(𝑁 + 𝑀)))) |
174 | 165, 173 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |
175 | 174 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ≥‘2)
∧ 𝑅 ∈ 𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
176 | 175 | 3exp 1116 |
. . . . . . . . . . 11
⊢ (𝑁 = 0 → (𝑀 ∈ (ℤ≥‘2)
→ (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
177 | 176 | com12 32 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘2) → (𝑁 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
178 | 129, 177 | jaoi 854 |
. . . . . . . . 9
⊢ ((𝑀 = 1 ∨ 𝑀 ∈ (ℤ≥‘2))
→ (𝑁 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
179 | 76, 178 | sylbi 220 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → (𝑁 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
180 | | coires1 6098 |
. . . . . . . . . . . . 13
⊢ ((𝑅↑𝑟0)
∘ ( I ↾ (dom 𝑅
∪ ran 𝑅))) = ((𝑅↑𝑟0)
↾ (dom 𝑅 ∪ ran
𝑅)) |
181 | | simp3 1135 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) |
182 | | relexp0rel 14449 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
183 | 181, 182 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟0)) |
184 | 181, 33 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
185 | 184 | dmeqd 5750 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟0) = dom ( I
↾ (dom 𝑅 ∪ ran
𝑅))) |
186 | | dmresi 5897 |
. . . . . . . . . . . . . . . 16
⊢ dom ( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (dom 𝑅 ∪ ran 𝑅) |
187 | 185, 186 | eqtrdi 2809 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟0) = (dom 𝑅 ∪ ran 𝑅)) |
188 | | eqimss 3950 |
. . . . . . . . . . . . . . 15
⊢ (dom
(𝑅↑𝑟0) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅↑𝑟0) ⊆ (dom
𝑅 ∪ ran 𝑅)) |
189 | 187, 188 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟0) ⊆ (dom
𝑅 ∪ ran 𝑅)) |
190 | | relssres 5868 |
. . . . . . . . . . . . . 14
⊢ ((Rel
(𝑅↑𝑟0) ∧ dom
(𝑅↑𝑟0) ⊆ (dom
𝑅 ∪ ran 𝑅)) → ((𝑅↑𝑟0) ↾ (dom
𝑅 ∪ ran 𝑅)) = (𝑅↑𝑟0)) |
191 | 183, 189,
190 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟0) ↾ (dom
𝑅 ∪ ran 𝑅)) = (𝑅↑𝑟0)) |
192 | 180, 191 | syl5eq 2805 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟0) ∘ ( I
↾ (dom 𝑅 ∪ ran
𝑅))) = (𝑅↑𝑟0)) |
193 | | simp1 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) |
194 | 193 | oveq2d 7171 |
. . . . . . . . . . . . 13
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
195 | | simp2 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑀 = 0) |
196 | 195 | oveq2d 7171 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑀) = (𝑅↑𝑟0)) |
197 | 196, 184 | eqtrd 2793 |
. . . . . . . . . . . . 13
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
198 | 194, 197 | coeq12d 5709 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = ((𝑅↑𝑟0) ∘ ( I
↾ (dom 𝑅 ∪ ran
𝑅)))) |
199 | 193, 195 | oveq12d 7173 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 𝑀) = (0 + 0)) |
200 | | 00id 10858 |
. . . . . . . . . . . . . 14
⊢ (0 + 0) =
0 |
201 | 199, 200 | eqtrdi 2809 |
. . . . . . . . . . . . 13
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 𝑀) = 0) |
202 | 201 | oveq2d 7171 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 𝑀)) = (𝑅↑𝑟0)) |
203 | 192, 198,
202 | 3eqtr4d 2803 |
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |
204 | 203 | a1d 25 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅 ∈ 𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
205 | 204 | 3exp 1116 |
. . . . . . . . 9
⊢ (𝑁 = 0 → (𝑀 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
206 | 205 | com12 32 |
. . . . . . . 8
⊢ (𝑀 = 0 → (𝑁 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
207 | 179, 206 | jaoi 854 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
208 | 2, 207 | sylbi 220 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ (𝑁 = 0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
209 | 208 | com12 32 |
. . . . 5
⊢ (𝑁 = 0 → (𝑀 ∈ ℕ0 → (𝑅 ∈ 𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))))) |
210 | 209 | 3impd 1345 |
. . . 4
⊢ (𝑁 = 0 → ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
211 | 75, 210 | jaoi 854 |
. . 3
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
212 | 1, 211 | sylbi 220 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀)))) |
213 | 212 | imp 410 |
1
⊢ ((𝑁 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑅
∈ 𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) = (𝑅↑𝑟(𝑁 + 𝑀))) |