MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpaddg Structured version   Visualization version   GIF version

Theorem relexpaddg 14404
Description: Relation composition becomes addition under exponentiation except when the exponents total to one and the class isn't a relation. (Contributed by RP, 30-May-2020.)
Assertion
Ref Expression
relexpaddg ((𝑁 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))

Proof of Theorem relexpaddg
StepHypRef Expression
1 elnn0 11887 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn0 11887 . . . . . . 7 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
3 relexpaddnn 14402 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
43a1d 25 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
543exp 1116 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
65com12 32 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
7 elnn1uz2 12313 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
8 coires1 6084 . . . . . . . . . . . . . 14 ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅))
9 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 = 1)
10 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 = 0)
119, 10oveq12d 7153 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (1 + 0))
12 1p0e1 11749 . . . . . . . . . . . . . . . . . 18 (1 + 0) = 1
1311, 12eqtrdi 2849 . . . . . . . . . . . . . . . . 17 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 1)
14 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑁 + 𝑀) = 1 → Rel 𝑅))
1513, 14mpd 15 . . . . . . . . . . . . . . . 16 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel 𝑅)
169oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = (𝑅𝑟1))
17 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑅𝑉)
18 relexp1g 14377 . . . . . . . . . . . . . . . . . . 19 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1917, 18syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟1) = 𝑅)
2016, 19eqtrd 2833 . . . . . . . . . . . . . . . . 17 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = 𝑅)
2120releqd 5617 . . . . . . . . . . . . . . . 16 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (Rel (𝑅𝑟𝑁) ↔ Rel 𝑅))
2215, 21mpbird 260 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel (𝑅𝑟𝑁))
23 1nn 11636 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
249, 23eqeltrdi 2898 . . . . . . . . . . . . . . . . 17 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈ ℕ)
25 relexpnndm 14392 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
2624, 17, 25syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
27 ssun1 4099 . . . . . . . . . . . . . . . 16 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2826, 27sstrdi 3927 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
29 relssres 5859 . . . . . . . . . . . . . . 15 ((Rel (𝑅𝑟𝑁) ∧ dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
3022, 28, 29syl2anc 587 . . . . . . . . . . . . . 14 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
318, 30syl5eq 2845 . . . . . . . . . . . . 13 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑁))
3210oveq2d 7151 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = (𝑅𝑟0))
33 relexp0g 14373 . . . . . . . . . . . . . . . 16 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3417, 33syl 17 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3532, 34eqtrd 2833 . . . . . . . . . . . . . 14 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3635coeq2d 5697 . . . . . . . . . . . . 13 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
3710oveq2d 7151 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (𝑁 + 0))
38 ax-1cn 10584 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
399, 38eqeltrdi 2898 . . . . . . . . . . . . . . . 16 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈ ℂ)
4039addid1d 10829 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 0) = 𝑁)
4137, 40eqtrd 2833 . . . . . . . . . . . . . 14 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 𝑁)
4241oveq2d 7151 . . . . . . . . . . . . 13 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑁))
4331, 36, 423eqtr4d 2843 . . . . . . . . . . . 12 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
4443exp43 440 . . . . . . . . . . 11 (𝑁 = 1 → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
45 simp1 1133 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ (ℤ‘2))
46 simp3 1135 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
47 relexpuzrel 14403 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
4845, 46, 47syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
49 eluz2nn 12272 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
5045, 49syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℕ)
5150, 46, 25syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
5251, 27sstrdi 3927 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
5348, 52, 29syl2anc 587 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
548, 53syl5eq 2845 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑁))
55 simp2 1134 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
5655oveq2d 7151 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
5746, 33syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5856, 57eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5958coeq2d 5697 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
6055oveq2d 7151 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (𝑁 + 0))
61 eluzelcn 12243 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
6245, 61syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℂ)
6362addid1d 10829 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 0) = 𝑁)
6460, 63eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑁)
6564oveq2d 7151 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑁))
6654, 59, 653eqtr4d 2843 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
6766a1d 25 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
68673exp 1116 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
6944, 68jaoi 854 . . . . . . . . . 10 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
707, 69sylbi 220 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
7170com12 32 . . . . . . . 8 (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
726, 71jaoi 854 . . . . . . 7 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
732, 72sylbi 220 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
7473com12 32 . . . . 5 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
75743impd 1345 . . . 4 (𝑁 ∈ ℕ → ((𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
76 elnn1uz2 12313 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
77 coires1 6084 . . . . . . . . . . . . . . 15 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
78 relcnv 5934 . . . . . . . . . . . . . . . . 17 Rel 𝑅
79 ssun1 4099 . . . . . . . . . . . . . . . . 17 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
8078, 79pm3.2i 474 . . . . . . . . . . . . . . . 16 (Rel 𝑅 ∧ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅))
81 relssres 5859 . . . . . . . . . . . . . . . 16 ((Rel 𝑅 ∧ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = 𝑅)
8280, 81mp1i 13 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = 𝑅)
8377, 82syl5eq 2845 . . . . . . . . . . . . . 14 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = 𝑅)
84 cnvco 5720 . . . . . . . . . . . . . . 15 ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁))
85 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 = 1)
86 1nn0 11901 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
8785, 86eqeltrdi 2898 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 ∈ ℕ0)
88 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑅𝑉)
89 relexpcnv 14386 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
9087, 88, 89syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
9185oveq2d 7151 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = (𝑅𝑟1))
92 cnvexg 7611 . . . . . . . . . . . . . . . . . . 19 (𝑅𝑉𝑅 ∈ V)
9388, 92syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑅 ∈ V)
94 relexp1g 14377 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ V → (𝑅𝑟1) = 𝑅)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟1) = 𝑅)
9690, 91, 953eqtrd 2837 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = 𝑅)
97 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 = 0)
98 0nn0 11900 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
9997, 98eqeltrdi 2898 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈ ℕ0)
100 relexpcnv 14386 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
10199, 88, 100syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
10297oveq2d 7151 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = (𝑅𝑟0))
103 relexp0g 14373 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
10493, 103syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
105101, 102, 1043eqtrd 2837 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
10696, 105coeq12d 5699 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
10784, 106syl5eq 2845 . . . . . . . . . . . . . 14 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
10899, 87nn0addcld 11947 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) ∈ ℕ0)
109 relexpcnv 14386 . . . . . . . . . . . . . . . 16 (((𝑁 + 𝑀) ∈ ℕ0𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
110108, 88, 109syl2anc 587 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
11197, 85oveq12d 7153 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (0 + 1))
112 0p1e1 11747 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
113111, 112eqtrdi 2849 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 1)
114113oveq2d 7151 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
115110, 114, 953eqtrd 2837 . . . . . . . . . . . . . 14 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
11683, 107, 1153eqtr4d 2843 . . . . . . . . . . . . 13 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
117 relco 6064 . . . . . . . . . . . . . 14 Rel ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀))
118 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑁 + 𝑀) = 1 → Rel 𝑅))
119113, 118mpd 15 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel 𝑅)
120113oveq2d 7151 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
12188, 18syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟1) = 𝑅)
122120, 121eqtrd 2833 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
123122releqd 5617 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (Rel (𝑅𝑟(𝑁 + 𝑀)) ↔ Rel 𝑅))
124119, 123mpbird 260 . . . . . . . . . . . . . 14 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel (𝑅𝑟(𝑁 + 𝑀)))
125 cnveqb 6020 . . . . . . . . . . . . . 14 ((Rel ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ∧ Rel (𝑅𝑟(𝑁 + 𝑀))) → (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
126117, 124, 125sylancr 590 . . . . . . . . . . . . 13 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
127116, 126mpbird 260 . . . . . . . . . . . 12 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
128127exp43 440 . . . . . . . . . . 11 (𝑁 = 0 → (𝑀 = 1 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
129128com12 32 . . . . . . . . . 10 (𝑀 = 1 → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
130 coires1 6084 . . . . . . . . . . . . . . . . 17 ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅))
131 simp2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ (ℤ‘2))
132 simp3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅𝑉)
133132, 92syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅 ∈ V)
134 relexpuzrel 14403 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (ℤ‘2) ∧ 𝑅 ∈ V) → Rel (𝑅𝑟𝑀))
135131, 133, 134syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
136 eluz2nn 12272 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
137131, 136syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ)
138 relexpnndm 14392 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ ∧ 𝑅 ∈ V) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
139137, 133, 138syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
140139, 79sstrdi 3927 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅))
141 relssres 5859 . . . . . . . . . . . . . . . . . 18 ((Rel (𝑅𝑟𝑀) ∧ dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
142135, 140, 141syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
143130, 142syl5eq 2845 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑀))
144 simp1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 = 0)
145144oveq2d 7151 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
146133, 103syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
147145, 146eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
148147coeq2d 5697 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
149144oveq1d 7150 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 𝑀))
150 eluzelcn 12243 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℂ)
151131, 150syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℂ)
152151addid2d 10830 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (0 + 𝑀) = 𝑀)
153149, 152eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑀)
154153oveq2d 7151 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑀))
155143, 148, 1543eqtr4d 2843 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)) = (𝑅𝑟(𝑁 + 𝑀)))
156 nnnn0 11892 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
157131, 136, 1563syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ0)
158157, 132, 89syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
159144, 98eqeltrdi 2898 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 ∈ ℕ0)
160159, 132, 100syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
161158, 160coeq12d 5699 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)) = ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)))
16284, 161syl5eq 2845 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)))
163159, 157nn0addcld 11947 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) ∈ ℕ0)
164163, 132, 109syl2anc 587 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
165155, 162, 1643eqtr4d 2843 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
166159nn0cnd 11945 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 ∈ ℂ)
167151, 166addcomd 10831 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑀 + 𝑁) = (𝑁 + 𝑀))
168 uzaddcl 12292 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ (ℤ‘2))
169131, 159, 168syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑀 + 𝑁) ∈ (ℤ‘2))
170167, 169eqeltrrd 2891 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) ∈ (ℤ‘2))
171 relexpuzrel 14403 . . . . . . . . . . . . . . . 16 (((𝑁 + 𝑀) ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟(𝑁 + 𝑀)))
172170, 132, 171syl2anc 587 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟(𝑁 + 𝑀)))
173117, 172, 125sylancr 590 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
174165, 173mpbird 260 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
175174a1d 25 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
1761753exp 1116 . . . . . . . . . . 11 (𝑁 = 0 → (𝑀 ∈ (ℤ‘2) → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
177176com12 32 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘2) → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
178129, 177jaoi 854 . . . . . . . . 9 ((𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)) → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
17976, 178sylbi 220 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
180 coires1 6084 . . . . . . . . . . . . 13 ((𝑅𝑟0) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟0) ↾ (dom 𝑅 ∪ ran 𝑅))
181 simp3 1135 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
182 relexp0rel 14388 . . . . . . . . . . . . . . 15 (𝑅𝑉 → Rel (𝑅𝑟0))
183181, 182syl 17 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟0))
184181, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
185184dmeqd 5738 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟0) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
186 dmresi 5888 . . . . . . . . . . . . . . . 16 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
187185, 186eqtrdi 2849 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟0) = (dom 𝑅 ∪ ran 𝑅))
188 eqimss 3971 . . . . . . . . . . . . . . 15 (dom (𝑅𝑟0) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅𝑟0) ⊆ (dom 𝑅 ∪ ran 𝑅))
189187, 188syl 17 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟0) ⊆ (dom 𝑅 ∪ ran 𝑅))
190 relssres 5859 . . . . . . . . . . . . . 14 ((Rel (𝑅𝑟0) ∧ dom (𝑅𝑟0) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟0) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟0))
191183, 189, 190syl2anc 587 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟0) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟0))
192180, 191syl5eq 2845 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟0) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟0))
193 simp1 1133 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
194193oveq2d 7151 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
195 simp2 1134 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
196195oveq2d 7151 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
197196, 184eqtrd 2833 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
198194, 197coeq12d 5699 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟0) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
199193, 195oveq12d 7153 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 0))
200 00id 10804 . . . . . . . . . . . . . 14 (0 + 0) = 0
201199, 200eqtrdi 2849 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 0)
202201oveq2d 7151 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟0))
203192, 198, 2023eqtr4d 2843 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
204203a1d 25 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
2052043exp 1116 . . . . . . . . 9 (𝑁 = 0 → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
206205com12 32 . . . . . . . 8 (𝑀 = 0 → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
207179, 206jaoi 854 . . . . . . 7 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
2082, 207sylbi 220 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
209208com12 32 . . . . 5 (𝑁 = 0 → (𝑀 ∈ ℕ0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
2102093impd 1345 . . . 4 (𝑁 = 0 → ((𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
21175, 210jaoi 854 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
2121, 211sylbi 220 . 2 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
213212imp 410 1 ((𝑁 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cun 3879  wss 3881   I cid 5424  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  ccom 5523  Rel wrel 5524  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cn 11625  2c2 11680  0cn0 11885  cuz 12231  𝑟crelexp 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-relexp 14371
This theorem is referenced by:  relexpaddd  14405  relexpnul  40379
  Copyright terms: Public domain W3C validator