MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpaddg Structured version   Visualization version   GIF version

Theorem relexpaddg 14960
Description: Relation composition becomes addition under exponentiation except when the exponents total to one and the class isn't a relation. (Contributed by RP, 30-May-2020.)
Assertion
Ref Expression
relexpaddg ((𝑁 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))

Proof of Theorem relexpaddg
StepHypRef Expression
1 elnn0 12386 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn0 12386 . . . . . . 7 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
3 relexpaddnn 14958 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
43a1d 25 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
543exp 1119 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
65com12 32 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
7 elnn1uz2 12826 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
8 coires1 6213 . . . . . . . . . . . . . 14 ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅))
9 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 = 1)
10 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 = 0)
119, 10oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (1 + 0))
12 1p0e1 12247 . . . . . . . . . . . . . . . . . 18 (1 + 0) = 1
1311, 12eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 1)
14 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑁 + 𝑀) = 1 → Rel 𝑅))
1513, 14mpd 15 . . . . . . . . . . . . . . . 16 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel 𝑅)
169oveq2d 7365 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = (𝑅𝑟1))
17 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑅𝑉)
18 relexp1g 14933 . . . . . . . . . . . . . . . . . . 19 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1917, 18syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟1) = 𝑅)
2016, 19eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = 𝑅)
2120releqd 5722 . . . . . . . . . . . . . . . 16 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (Rel (𝑅𝑟𝑁) ↔ Rel 𝑅))
2215, 21mpbird 257 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel (𝑅𝑟𝑁))
23 1nn 12139 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
249, 23eqeltrdi 2836 . . . . . . . . . . . . . . . . 17 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈ ℕ)
25 relexpnndm 14948 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
2624, 17, 25syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
27 ssun1 4129 . . . . . . . . . . . . . . . 16 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2826, 27sstrdi 3948 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
29 relssres 5973 . . . . . . . . . . . . . . 15 ((Rel (𝑅𝑟𝑁) ∧ dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
3022, 28, 29syl2anc 584 . . . . . . . . . . . . . 14 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
318, 30eqtrid 2776 . . . . . . . . . . . . 13 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑁))
3210oveq2d 7365 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = (𝑅𝑟0))
33 relexp0g 14929 . . . . . . . . . . . . . . . 16 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3417, 33syl 17 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3532, 34eqtrd 2764 . . . . . . . . . . . . . 14 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3635coeq2d 5805 . . . . . . . . . . . . 13 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
3710oveq2d 7365 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (𝑁 + 0))
38 ax-1cn 11067 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
399, 38eqeltrdi 2836 . . . . . . . . . . . . . . . 16 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈ ℂ)
4039addridd 11316 . . . . . . . . . . . . . . 15 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 0) = 𝑁)
4137, 40eqtrd 2764 . . . . . . . . . . . . . 14 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 𝑁)
4241oveq2d 7365 . . . . . . . . . . . . 13 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑁))
4331, 36, 423eqtr4d 2774 . . . . . . . . . . . 12 (((𝑁 = 1 ∧ 𝑀 = 0) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
4443exp43 436 . . . . . . . . . . 11 (𝑁 = 1 → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
45 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ (ℤ‘2))
46 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
47 relexpuzrel 14959 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
4845, 46, 47syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
49 eluz2nn 12789 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
5045, 49syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℕ)
5150, 46, 25syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
5251, 27sstrdi 3948 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
5348, 52, 29syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
548, 53eqtrid 2776 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑁))
55 simp2 1137 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
5655oveq2d 7365 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
5746, 33syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5856, 57eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5958coeq2d 5805 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
6055oveq2d 7365 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (𝑁 + 0))
61 eluzelcn 12747 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
6245, 61syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℂ)
6362addridd 11316 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 0) = 𝑁)
6460, 63eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑁)
6564oveq2d 7365 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑁))
6654, 59, 653eqtr4d 2774 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
6766a1d 25 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
68673exp 1119 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
6944, 68jaoi 857 . . . . . . . . . 10 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
707, 69sylbi 217 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
7170com12 32 . . . . . . . 8 (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
726, 71jaoi 857 . . . . . . 7 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
732, 72sylbi 217 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
7473com12 32 . . . . 5 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
75743impd 1349 . . . 4 (𝑁 ∈ ℕ → ((𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
76 elnn1uz2 12826 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
77 coires1 6213 . . . . . . . . . . . . . . 15 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
78 relcnv 6055 . . . . . . . . . . . . . . . . 17 Rel 𝑅
79 ssun1 4129 . . . . . . . . . . . . . . . . 17 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
8078, 79pm3.2i 470 . . . . . . . . . . . . . . . 16 (Rel 𝑅 ∧ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅))
81 relssres 5973 . . . . . . . . . . . . . . . 16 ((Rel 𝑅 ∧ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = 𝑅)
8280, 81mp1i 13 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = 𝑅)
8377, 82eqtrid 2776 . . . . . . . . . . . . . 14 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = 𝑅)
84 cnvco 5828 . . . . . . . . . . . . . . 15 ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁))
85 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 = 1)
86 1nn0 12400 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
8785, 86eqeltrdi 2836 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑀 ∈ ℕ0)
88 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑅𝑉)
89 relexpcnv 14942 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
9087, 88, 89syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
9185oveq2d 7365 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = (𝑅𝑟1))
92 cnvexg 7857 . . . . . . . . . . . . . . . . . . 19 (𝑅𝑉𝑅 ∈ V)
9388, 92syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑅 ∈ V)
94 relexp1g 14933 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ V → (𝑅𝑟1) = 𝑅)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟1) = 𝑅)
9690, 91, 953eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑀) = 𝑅)
97 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 = 0)
98 0nn0 12399 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
9997, 98eqeltrdi 2836 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → 𝑁 ∈ ℕ0)
100 relexpcnv 14942 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
10199, 88, 100syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
10297oveq2d 7365 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = (𝑅𝑟0))
103 relexp0g 14929 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
10493, 103syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
105101, 102, 1043eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
10696, 105coeq12d 5807 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
10784, 106eqtrid 2776 . . . . . . . . . . . . . 14 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
10899, 87nn0addcld 12449 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) ∈ ℕ0)
109 relexpcnv 14942 . . . . . . . . . . . . . . . 16 (((𝑁 + 𝑀) ∈ ℕ0𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
110108, 88, 109syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
11197, 85oveq12d 7367 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = (0 + 1))
112 0p1e1 12245 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
113111, 112eqtrdi 2780 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑁 + 𝑀) = 1)
114113oveq2d 7365 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
115110, 114, 953eqtrd 2768 . . . . . . . . . . . . . 14 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
11683, 107, 1153eqtr4d 2774 . . . . . . . . . . . . 13 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
117 relco 6059 . . . . . . . . . . . . . 14 Rel ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀))
118 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑁 + 𝑀) = 1 → Rel 𝑅))
119113, 118mpd 15 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel 𝑅)
120113oveq2d 7365 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
12188, 18syl 17 . . . . . . . . . . . . . . . . 17 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟1) = 𝑅)
122120, 121eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
123122releqd 5722 . . . . . . . . . . . . . . 15 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (Rel (𝑅𝑟(𝑁 + 𝑀)) ↔ Rel 𝑅))
124119, 123mpbird 257 . . . . . . . . . . . . . 14 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → Rel (𝑅𝑟(𝑁 + 𝑀)))
125 cnveqb 6145 . . . . . . . . . . . . . 14 ((Rel ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ∧ Rel (𝑅𝑟(𝑁 + 𝑀))) → (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
126117, 124, 125sylancr 587 . . . . . . . . . . . . 13 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
127116, 126mpbird 257 . . . . . . . . . . . 12 (((𝑁 = 0 ∧ 𝑀 = 1) ∧ (𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
128127exp43 436 . . . . . . . . . . 11 (𝑁 = 0 → (𝑀 = 1 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
129128com12 32 . . . . . . . . . 10 (𝑀 = 1 → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
130 coires1 6213 . . . . . . . . . . . . . . . . 17 ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅))
131 simp2 1137 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ (ℤ‘2))
132 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅𝑉)
133132, 92syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅 ∈ V)
134 relexpuzrel 14959 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ (ℤ‘2) ∧ 𝑅 ∈ V) → Rel (𝑅𝑟𝑀))
135131, 133, 134syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
136 eluz2nn 12789 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
137131, 136syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ)
138 relexpnndm 14948 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ ∧ 𝑅 ∈ V) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
139137, 133, 138syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
140139, 79sstrdi 3948 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅))
141 relssres 5973 . . . . . . . . . . . . . . . . . 18 ((Rel (𝑅𝑟𝑀) ∧ dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
142135, 140, 141syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
143130, 142eqtrid 2776 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑀))
144 simp1 1136 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 = 0)
145144oveq2d 7365 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
146133, 103syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
147145, 146eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
148147coeq2d 5805 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
149144oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 𝑀))
150 eluzelcn 12747 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℂ)
151131, 150syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℂ)
152151addlidd 11317 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (0 + 𝑀) = 𝑀)
153149, 152eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑀)
154153oveq2d 7365 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑀))
155143, 148, 1543eqtr4d 2774 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)) = (𝑅𝑟(𝑁 + 𝑀)))
156 nnnn0 12391 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
157131, 136, 1563syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ0)
158157, 132, 89syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
159144, 98eqeltrdi 2836 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 ∈ ℕ0)
160159, 132, 100syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
161158, 160coeq12d 5807 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)) = ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)))
16284, 161eqtrid 2776 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ (𝑅𝑟𝑁)))
163159, 157nn0addcld 12449 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) ∈ ℕ0)
164163, 132, 109syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
165155, 162, 1643eqtr4d 2774 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
166159nn0cnd 12447 . . . . . . . . . . . . . . . . . 18 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 ∈ ℂ)
167151, 166addcomd 11318 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑀 + 𝑁) = (𝑁 + 𝑀))
168 uzaddcl 12805 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ (ℤ‘2))
169131, 159, 168syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑀 + 𝑁) ∈ (ℤ‘2))
170167, 169eqeltrrd 2829 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) ∈ (ℤ‘2))
171 relexpuzrel 14959 . . . . . . . . . . . . . . . 16 (((𝑁 + 𝑀) ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟(𝑁 + 𝑀)))
172170, 132, 171syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟(𝑁 + 𝑀)))
173117, 172, 125sylancr 587 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) ↔ ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
174165, 173mpbird 257 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
175174a1d 25 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
1761753exp 1119 . . . . . . . . . . 11 (𝑁 = 0 → (𝑀 ∈ (ℤ‘2) → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
177176com12 32 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘2) → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
178129, 177jaoi 857 . . . . . . . . 9 ((𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)) → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
17976, 178sylbi 217 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
180 coires1 6213 . . . . . . . . . . . . 13 ((𝑅𝑟0) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟0) ↾ (dom 𝑅 ∪ ran 𝑅))
181 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
182 relexp0rel 14944 . . . . . . . . . . . . . . 15 (𝑅𝑉 → Rel (𝑅𝑟0))
183181, 182syl 17 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟0))
184181, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
185184dmeqd 5848 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟0) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
186 dmresi 6003 . . . . . . . . . . . . . . . 16 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
187185, 186eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟0) = (dom 𝑅 ∪ ran 𝑅))
188 eqimss 3994 . . . . . . . . . . . . . . 15 (dom (𝑅𝑟0) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅𝑟0) ⊆ (dom 𝑅 ∪ ran 𝑅))
189187, 188syl 17 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟0) ⊆ (dom 𝑅 ∪ ran 𝑅))
190 relssres 5973 . . . . . . . . . . . . . 14 ((Rel (𝑅𝑟0) ∧ dom (𝑅𝑟0) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟0) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟0))
191183, 189, 190syl2anc 584 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟0) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟0))
192180, 191eqtrid 2776 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟0) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟0))
193 simp1 1136 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
194193oveq2d 7365 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
195 simp2 1137 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
196195oveq2d 7365 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
197196, 184eqtrd 2764 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
198194, 197coeq12d 5807 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟0) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
199193, 195oveq12d 7367 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 0))
200 00id 11291 . . . . . . . . . . . . . 14 (0 + 0) = 0
201199, 200eqtrdi 2780 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 0)
202201oveq2d 7365 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟0))
203192, 198, 2023eqtr4d 2774 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
204203a1d 25 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
2052043exp 1119 . . . . . . . . 9 (𝑁 = 0 → (𝑀 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
206205com12 32 . . . . . . . 8 (𝑀 = 0 → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
207179, 206jaoi 857 . . . . . . 7 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
2082, 207sylbi 217 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑁 = 0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
209208com12 32 . . . . 5 (𝑁 = 0 → (𝑀 ∈ ℕ0 → (𝑅𝑉 → (((𝑁 + 𝑀) = 1 → Rel 𝑅) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))))
2102093impd 1349 . . . 4 (𝑁 = 0 → ((𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
21175, 210jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
2121, 211sylbi 217 . 2 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀))))
213212imp 406 1 ((𝑁 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑅𝑉 ∧ ((𝑁 + 𝑀) = 1 → Rel 𝑅))) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  wss 3903   I cid 5513  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  ccom 5623  Rel wrel 5624  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  cn 12128  2c2 12183  0cn0 12384  cuz 12735  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-relexp 14927
This theorem is referenced by:  relexpaddd  14961
  Copyright terms: Public domain W3C validator